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 Econometrica, Vol. 62, No. 1 (January, 1994), 157-180

 MONOTONE COMPARATIVE STATICS

 BY PAUL MILGROM AND CHRIS SHANNON '

 We derive a necessary and sufficient condition for the solution set of an optimization
 problem to be monotonic in the parameters of the problem. In addition, we develop
 practical methods for checking the condition and demonstrate its applications to the
 classical theories of the competitive firm, the monopolist, the Bertrand oligopolist,
 consumer and growth theory, game theory, and general equilibrium analysis.

 KEYWORDS: Supermodular, quasisupermodular, single crossing condition, comparative
 statics, strategic complements.

 1. INTRODUCTION

 THE MOST COMMON METHODS for comparative statics analyses in modern eco-

 nomics are based on applying the implicit function theorem to first-order

 conditions or on exploiting the identities of duality theory. Of course, in order

 to apply these methods, certain assumptions must be satisfied. The most

 common such assumptions concern the convexity of preferred sets or constraint

 sets, the smoothness of indifference curves or boundaries of constraint sets,
 derivative conditions such as Inada conditions that ensure interior solutions,

 strict second derivative conditions or conditions regarding the positive or
 negative definiteness of the Hessian, and the linearity of budget sets or objective
 functions.

 It is important to recognize that the only role these assumptions play is as
 servants to a method. No combination of these assumptions could ever be either
 necessary or sufficient for any nontrivial conclusion about the direction of
 change of the endogenous choice variables in response to changes in exogenous

 parameters. Indeed, consider any parameterized family of optimization prob-
 lems with choice variables x and parameters t. If some combination of these
 assumptions holds for the pair of variables (x, t), then the same combination of
 assumptions also holds for the variables (x, -t). For example, given the con-
 straint (x, t) E C, an equivalent formulation of this constraint is the requirement
 that (x, -t) e C, where C {- (x, -t)I(x, t) E C}. Then the set C will be convex,
 have smooth (or linear) boundaries, be open and so on if and only if the set C
 has the same property; consequently, if such conditions were sufficient to imply
 that the optimum x* is a nondecreasing function of t over some range of
 parameter values, they would also imply that x* is a nondecreasing function of
 -t over the corresponding range, which is possible only in the trivial case.

 It is even clearer that these conditions couldn't be necessary for any meaning-

 ful comparative statics conclusions. To see this, suppose that g is any discontin-
 uous function that is increasing and has an increasing inverse, and let y = g(x).

 1We thank Tim Bresnahan, Don Brown, Olivier Compte, Larry Lau, Leslie McFarland Marx,
 John Roberts, Armin Schmutzler, Don Topkis, Yingyi Qian, the editor and anonymous referees for
 discussions and comments, and the National Science and Sloan Foundations for financial support.
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 158 P. MILGROM AND C. SHANNON

 Then the parameterized problem

 Maximize f(x; t) subject to x E S

 is equivalent to the problem

 Maximize h(y;t) subject to yEeg(S)

 where h(y; t) = f(g -1(y); t). Since g is an order-preserving transformation, the
 solution x*(t) is nondecreasing if and only if y*(t) = g(x*(t)) is nondecreasing.

 However, even if the original problem were smooth or linear or convex in the

 choice variable x, the transformed problem is certainly not, and hence the

 comparative statics conclusions are not predicated on these types of assump-
 tions.

 In this paper, we develop a theory and methods for comparative statics

 analysis using only conditions that are ordinal, that is, independent of order-
 preserving transformations. We identify necessary and sufficient conditions for

 monotone comparative statics both for individual optimization problems and for
 certain families of problems. Because our analysis depends only on the order
 structure of the problems, it is equally effective for both convex and nonconvex

 problems.
 The remainder of the paper is organized as follows. In Section 2, we

 introduce the relevant mathematical structure, which uses only the order

 properties of the parameter set and the set of decision variables. There we

 present the necessary and sufficient condition for monotone comparative statics

 and relate it to the "Spence-Mirrlees" single crossing condition of incentive
 theory and information economics. Section 3 contains characterizations of our

 conditions and also introduces the key applications-oriented theorems, which
 give necessary and sufficient conditions for monotone comparative statics to
 hold in each of a parameterized family of problems. Section 4 then illustrates
 how the methods can be applied to both old and new problems of microeco-
 nomics. In Section 5, we apply our conditions to extend the theory of games

 with strategic complementarities and to analyze general equilibrium models

 with gross substitutes in demand. Concluding remarks are given in Section 6,
 followed by an Appendix devoted to studying the nonemptiness and structure of
 the set of optima.

 2. THE THEORY OF MONOTONE COMPARATIVE STATICS

 Statements about monotone comparative statics are fundamentally statements
 about order-they are statements of the form that an increase in some variable
 leads to increases in other variables-so the machinery needed to develop a

 general theory of monotone comparative statics is order-theoretical, that is,
 lattice theory.

 Let X be a partially ordered set, with the transitive, reflexive, antisymmetric

 order relation > .2 For x and y elements of X, let x v y denote the least upper

 2Recall that an order relation is reflexive if x > x for every x E X, and antisymmetric if x > y
 and y > x implies that x = y.
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 MONOTONE COMPARATIVE STATICS 159

 bound, or join, of x and y in X, if it exists, and let x A y denote the greatest

 lower bound, or meet of x and y in X, if it exists. The set X is a lattice if for

 every pair of elements x and y in X, the join x V y and meet x A y do exist as
 elements of X. Similarly, a subset S of X is a sublattice of X if S is closed

 under the operations meet and join. Finally, a sublattice S of X is complete if

 for every nonempty subset S' of S, inf(S') and sup(S') both exist and are
 elements of S.3

 It is important to notice that all of these definitions rely on the order > on

 the underlying set X. In many applications, X will be R' with the component-

 wise order. In those cases, x A y denotes the component-wise minimum of x

 and y and x v y denotes the component-wise maximum. Furthermore, when X

 is l8', a bounded sublattice S of X is complete if and only if it is a compact set
 in the standard Euclidean topology. A simple example of a set which is not a

 lattice in the component-wise order is {(x1, x2) 1x1 + x2 = 1}. However, this same

 set is a lattice in the order in which x>y if x1 >y1 and x2<y2. When the
 lattice X is a product of lattices, say A x B, then our default specification of
 order on X is to use the product order, so that (a, b) > (a', b') if a > a' in A
 and b > b' in B.

 Monotone comparative statics requires an order both on the set of constraints

 and on the set of maximizers. The one we will use is the strong set order AS

 introduced by Veinott (1989). For X a lattice with the given relation >, with Z

 and Y elements of the power set P(X), we say that Z <, Y, read "Y is higher
 than Z", if for every zE Z and yE Y, zAy EZ and z vy EY. Given a

 partially ordered set T, we say that a set-valued function M: T -* P(X) is
 monotone nondecreasing if t < t' implies M(t) AS M(t'). In particular, if the sets
 Z and Y are singletons, then the strong set order AS coincides with the given

 order < on the underlying choice set, so that {z <S {y) if and only if z < y.
 Also, if M(t)=[O,g(t)]={xeX: O<x?g(t)), where g: T--X is increasing,
 then M is nondecreasing in the strong set order.

 Note that the strong set order is not generally reflexive: S >s S if and only if
 S is a sublattice of X. This fact gives sublattices a particularly important role in
 our theory. The order is transitive on nonempty sets, but the empty set is an

 exception: for any set S, S As 0 < s S.
 Topkis (1976) develops a simple characterization of the structure of the

 sublattices of R'8 in terms of a set of n2 constraints, each of which involves no
 more than two components of the vector.

 THEOREM 1: A subset S of R;'n is a sublattice if and only if there exist n(n - 1)

 functions gi1: R 2 -*> R (i + j), each of which is increasing in its first argument and
 decreasing in its second, and n sets Si c R (i= 1,...,n) such that S =
 {xlgij(xi, xj) < 0 for all 1 < ij < n n rx {xi E Si).

 The ranking of complete sublattices in the strong set order will prove
 especially useful in applications, and it can be given a simple characterization.

 3 There is also a topological characterization of completeness: A sublattice S of X is complete if
 and only if it is compact in the order-interval topology. On bounded sets in RW, the order-interval
 topology coincides with the Eucilidean topology (Birkoff (1967)).
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 160 P. MILGROM AND C. SHANNON

 THEOREM 2: S and S' are complete sublattices of X such that S >S S' if and
 only if there exists a complete sublattice R of X such that S = R n {x > inf (S)} and

 S' = R n {x < sup (S')}. Moreover, if S and S' are complete sublattices with

 S >, S', then S u S' is a complete sublattice.

 PROOF: Suppose S and S' are complete sublattices with S >K S'. To establish
 that S u S' is a sublattice, suppose x, y E S u S'. If x and y are both elements
 of the same sublattice S or S', then their meet and join are elements of the
 same sublattice, and hence clearly elements of S u S'. If x E S and y E S', then
 by the definition of the strong set order, x A y E S' and x v y E S. Hence, S U S'
 is a sublattice.

 To establish that S U S' is complete, let Q c S u S'. If either Q nl S or Q n S'
 is empty, then the completeness of S and S' implies that inf (Q), sup (Q) E S U S'.
 Now suppose both Q nl S and Q n S' are nonempty and let x5 = inf(Q n S) and

 Xs$ = inf(Q n S'). Then xs E S and x5, E S', again by the completeness of S
 and S'. Then inf(Q) = x S A xS E S' C S U S', because S is higher than S', and
 sup (Q) = Xs V xS, E S U S'.

 For the characterization of S, suppose x E S' A {x > inf(S)}. Then since

 S >, S' and inf(S) E S, we may conclude that x = x v inf(S) e S. Hence, S =
 (S U S') n {.x > inf(S)}. The characterization of S' is proved similarly.
 The proof of the converse is immediate. Q.E.D.

 According to this theorem, one complete sublattice is higher than another if
 and only if the first consists of the part of some sublattice lying above some
 point (inf(S)) and the other consists of the part of the same sublattice lying
 below some other point (sup (')).

 The preceding definitions have been standard ones. The critical new concept
 introduced here is the following one. Let X be a lattice, T be a partially

 ordered set, and f: X x T -- R. Then f satisfies the single crossing property in
 (x; t) if for x' > x" and t' > t", f(x', t") > f(x", t") implies that f(x', t') > f(x", t')
 and f(x', t") > f(x", t") implies that f(x', t') >f(x", t'). If f(x', t") >f(x", t")
 implies that f(x', t') > f(x", t') for every t' > t", then f satisfies the strict single
 crossing property in (x; t).

 The terms "single crossing property" and "strict single crossing property" are
 used because the expression f(x', t) -f(x, t), regarded as a function of t,
 crosses zero only once (and only from below) when these conditions hold.
 Notice that if we think of the set X as the choice space and the set T as the
 space of parameters, then not only is the single crossing property a condition
 describing the relationship between the choice variables and the parameters,
 but it is also an ordinal condition. This property is closely related to the single
 crossing condition used by Spence and Mirrlees in their signaling and optimal
 taxation models, and in many other models of modern incentive theory. In the
 now standard formulation, a decision maker of type t who chooses a point
 (x, y) E HR2 has a payoff of U(x, y; t). A continuously differentiable function U

 on a rectangular domain with UY # 0 satisfies the (strict) Spence-Mirrlees
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 MONOTONE COMPARATIVE STATICS 161

 condition if U1/ I UyI is nondecreasing (increasing) in t for any fixed (x, y). We
 shall limit attention to completely regular functions U, that is, continuously

 differentiable functions for which the indifference sets {(x, y) I U(x, y, t) = u} are
 path-connected. This condition is always satisfied if U, in addition to being

 continuously differentiable, has both Ux and Uy nonzero everywhere.
 The relationship between the Spence-Mirrlees single crossing property and

 our alternative definitions of the single crossing property is established by the
 following theorem.

 THEOREM 3: Let HR2 be given the lexicographic order, with (x, y) > (x', y') if
 either x > x' or x = x' and y > y'. Suppose that U(x, y, t): DR3 -a R is completely
 regular and twice continuously differentiable with Uy # 0. Then U(x,y;t) has the
 (strict) single crossing property in (x, y; t) if and only if it satisfies the (strict)
 Spence-Mirrlees condition.

 PROOF: We treat the strict case only; the other case is almost identical.

 : Suppose (xc, y) > (xA,9) in the lexicographic order and U(xc, y; t) >
 U(x, 9; t). If x = x, then since U is strictly increasing or strictly decreasing in y,
 the sign of this inequality cannot depend on t, so we may limit our attention to
 the case where x > x. If, contrary to the theorem, there exists some t > t such
 that U(x, y; t) < U(xA, 9; t), then by continuity of U there exists some t < t such

 that U(C, y; t) = U(x, 9; t). Then, since U is completely regular, there is some
 isoutility curve {(x(s), y(s))ls E [0, 1]} such that x'(s)> 0, (x(O), y(O)) = (&A, 9),

 and (x(1), y(1)) = (x~, O). But then the Spence-Mirrlees condition implies that

 _(+U[x(s), y(s), t])
 ? UY[x(s) y(s) t] I

 =y'(s) sign (UY) + UX [x(s), y(s), t]x'(s)

 IUyI

 So,

 0< fy'(s) sign (UY) + x [x(s),y(s),t]x'(s))

 x |UY(x(s), y( s), t) |ds

 d

 f dsU(x(s), y(s), t) ds

 (t t ( po es
 contrary to the hypothesis.

This content downloaded from 
������������69.131.152.3 on Tue, 13 Jun 2023 17:21:21 +00:00������������ 

All use subject to https://about.jstor.org/terms



 162 P. MILGROM AND C. SHANNON

 : Consider a rectangular set D c R2 on which the Spence-Mirrlees condi-

 tion does not hold, so that UJ/ I UyI decreases (weakly) from t to -. Let (x, y)
 and (x,y) be points in the interior of D such that xi > x and U(x, y,t)=

 U(x, y, t). Then repeating the same steps leads to the conclusion that U(x, y,-t)
 ? U(x, y, t), contrary to the strict single crossing condition. Q.E.D.

 When the choice set is totally ordered (a chain), the single crossing property
 is the only condition we will need for comparative statics. However, when the
 choice set is not totally ordered, an additional condition is necessary. For
 example, when the choice set is R , monotone comparative statics restricts the
 interactions among the components of the choice variable. Thus, given a lattice

 X, we say that a function f: X -- DR is quasisupermodular if (i) f(x) > f(x A y)
 implies f(x v y) > f(y) and (ii) f(x) > f(x A y) implies f(x v y) > f(y). Note
 that when X = DR, so that the choice set is a chain, every function is quasisuper-
 modular, as the order operations meet and join are then trivial. When X= R=
 requiring f to be quasisupermodular is equivalent to requiring that f satisfy the
 single crossing property in (x1; x2) and also in (x2; x1). When the choice space
 is of greater dimension, quasisupermodularity involves additional multivariate
 restrictions as well. Quasisupermodularity expresses a weak kind of complemen-
 tarity between the choice variables; if an increase in some subset of the choice
 variables is desirable at some level of the remaining choice variables, it will
 remain desirable as the remaining variables also increase. With the definitions
 in place, we can state our main theorem.

 THEOREM 4 (Monotonicity Theorem): Let f: X x T -- D, where X is a lattice,
 T is a partially ordered set and S cX. Then arg max XS f(x, t) is monotone
 nondecreasing in (t, S) if and only if f is quasisupermodular in x and satisfies the
 single crossing property in (x; t).

 PROOF: Let M(t, S) argmaxXE5 f(x, t).

 -: Let S' >S S, t S t', x E M(t, S), x' E M(t', S'). Consider x v x'. Since
 x e M(t, S) and S s S', then f(x, t) >f(x A x', t). By quasisupermodularity,
 f(x vx', t) > f(x', t), and by the single crossing property, f(x vx', t') > f(x', t'),
 hence x v x' E M(t', S').

 Similarly, consider x A x'. Since x' E M(t', S') and S <s S', then f(x', t')>
 f(x vx', t'), or f(x vx', t') -f(x', t') <0. Then the single crossing property
 implies that f(x v x', t) - f(x', t) S 0, so quasisupermodularity implies f(x A
 x', t) > f(x, t), i.e., x A x' E M(t, S).

 : To show that f is quasisupermodular, suppose t is fixed and x, x' are in
 X. Let S={x,xAx'), and let S'-{x',xvx'}. Then S Ss S'. If f(x,t) >
 (>)f(x A x', t), then x E M(t, S), hence f(x vx', t) > (>)f(x', t).

 To show that the single crossing property must hold, let S {x, x}, where

 XXf>x. MG,t)>(>)OxEM(t,S)SsM(t,S) for t>t, so f(x,-t
 f(x, -) > (> )O for every -t > t. Q.E.D.
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 MONOTONE COMPARATIVE STATICS 163

 COROLLARY 1: f(x) is quasisupermodular if and only if argmaxxs f(x) is
 monotone nondecreasing in S.

 PROOF: Apply Theorem 4, setting T {t). Q.E.D.

 Thus the restrictions on how f varies in the choice variable are implied by
 monotonicity of the set of maximizers in the constraint set. If the conclusion
 that the set of maximizers is monotone nondecreasing in S were not required,
 then f need not be quasisupermodular. This observation motivates many of the
 partial monotonicity results developed in the next section.

 The next corollary describes the structure of the set of optimizers.

 COROLLARY 2: If S is a sublattice of X, and f is quasisupermodular, then

 argmaxx cSf(x, t) is a sublattice of S.

 PROOF: This corollary also follows directly from the theorem, as (t, S) < (t, S)
 if and only if S is a sublattice of X. Q.E.D.

 Of course we have made no claim yet that the set of maximizers of f is
 nonempty; without such results we could certainly just be studying properties of

 the empty set. For many applications, the existence of maximizers will follow

 immediately from the upper semi-continuity of f and compactness of S. When,
 in addition, f is quasisupermodular and S is a sublattice, the set of maximizers
 is actually a complete sublattice, and hence has a greatest and least element

 x*(t, S) and x * (t, S). The monotonicity theorem then guarantees that x*(t, S)
 and x * (t, S) are nondecreasing functions, and hence monotone selections from
 the set of maximizers. General sufficient conditions for the set of maximizers to
 be a nonempty complete sublattice are given in the appendix.

 A variant of Theorem 4 corresponding to the strict single crossing property
 can be proved similarly.

 THEOREM 4' (Monotone Selection Theorem): Let f: X x T -* R, where X is a
 lattice and T is a partially ordered set. If S: T -* 2x is nondecreasing and if f is
 quasisupermodular in x and satisfies the strict single crossing property in (x; t),
 then every selection x*(t) from argmaxx s(t) f(x, t) is monotone nondecreasing
 in t.

 3. CHARACTERIZING QUASISUPERMODULARITY AND THE SINGLE
 CROSSING CONDITION

 Although quasisupermodularity and the single crossing property may seem
 abstract and difficult to check, the results of this section give several important
 characterizations of these conditions in terms of previously known conditions:
 supermodularity, increasing differences, and the Spence-Mirrlees single crossing
 condition.
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 164 P. MILGROM AND C. SHANNON

 Given a lattice X and a partially ordered set T, the function f: X -[ R is

 supermodular if for all x, yE X, f(x) + f(y) < f(x V y) + f(x A y), and the

 function f: Xx T -3 R has increasing differences in (x, t) if for x' > x, f(x', t) -
 f(x, t) is monotone nondecreasing in t. In Euclidean applications, supermodu-

 larity means that increasing any subset of the decision variables raises the

 incremental returns associated with increases in the others. Similarly, increasing

 differences means that increasing a parameter raises the marginal return to

 activities. An important comparative statics theorem, due to Topkis (1978), is

 the following one.

 THEOREM 5: Let X be a lattice, T a partially ordered set, and f: X x T ->, R. If
 f(x, t) is supermodular in x and has increasing differences in (x; t), then

 arg maxX E= s f(x, t) is monotone nondecreasing in (t, S).

 It should be clear, either from the definitions or from Theorems 4 and 5, that

 any supermodular function is also quasisupermodular, and similarly, any func-
 tion which has increasing differences in (x, t) will also satisfy the single crossing

 property in (x, t) as well.
 Supermodularity and increasing differences are often especially useful in

 applications because they have a number of strong properties. As the following
 theorem of Topkis (1978) indicates, supermodularity and increasing differences
 are easily characterized for smooth functions on R'.

 THEOREM 6: Let f: Rn X R' -[ R be twice continuously differentiable on the
 interval (a, b). Then f has increasing differences in (x, t) if and only if a2f/axia tj
 > 0 for i =1,...,n, j =1,...,m; and f is supermodular in x if and only if
 a2f/xiax j > 0 for i i j.

 Furthermore, as the next theorem illustrates, supermodularity is preserved

 under a number of operations. This theorem is based on results in Topkis
 (1978).

 THEOREM 7: (i) If f and g are supermodular, and a,,1 > 0, then af+,Bg is
 supermodular. (ii) If the functions fl, f2,... are supermodular and f* is the
 pointwise limit of {fnj, then f * is supermodular. Also, En fn is supermodular if
 this pointwise sum is well defined. (iii) If f is supermodular and increasing and g:
 R R is increasing and convex, then g o f is supermodular.

 Notice that Theorem 7 indicates that there may be a role for convex functions

 in lattice theoretic comparative statics analyses, even though both the preferred
 sets and the constraint sets need not be convex.

 Clearly, for any quasisupermodular function f: X -[ R and any strictly in-

 creasing function g: [R -* R, the composition g(f(x)) is also quasisupermodular.
 In particular, if f is supermodular, then g(f(x)) is quasisupermodular for any
 strictly increasing function g, and if there exists some such strictly increasing
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 MONOTONE COMPARATIVE STATICS 165

 x y

 0 1 2 3

 0 1 2 2 1
 1 3 4 5 3

 EXAMPLE 1-The tabulated function f is quasisupermodular but not supermodularizable.

 function h: R -* R such that h(f(x)) is supermodular, then the original function
 f is quasisupermodular. Such functions are called supermodularizabie, and have

 been studied by Li Calzi (1991). Supermodularizable functions can be usefully
 applied in one of the monopoly pricing problems discussed in the following

 section.

 Although supermodular and supermodularizable functionis are an important
 subset of quasisupermodular functions, not every quasisupermodular function is

 supermodularizable, as Example 1 illustrates. To see this, suppose g is an
 increasing function such that g(f(*)) is supermodular. Then, focusing on the
 domain {0, 11 x {0, 1}, supermodularity implies that g(3) + g(2) < g(4) + g(1).
 Focusing on {0, 1} x {2,3}, we have g(5) + g(l) < g(3) + g(2). Together these
 imply that g(5) < g(4), contrary to the hypothesis that g is increasing. The same
 example establishes that functions with the single crossing property need not be
 supermodularizable. The actual relation between supermodularity and quasisu-

 permodularity involves transformations on restricted domains.

 LEMMA: Suppose f: X ->l R is quasisupermodular, where X = {x, x', x V x', x A

 x'}. Then there exists some h: Ra -* R such that h is strictly increasing and h o f:
 X -[ R is supermodular.

 PROOF: Let f be the function which maps x -* a, x v x' - b, x A X' -, c, and
 x- d. Without loss of generality, assume that d > c. Quasisupermodularity

 implies that b > a and either a < c or b > d. In the first case, a = min (a, b, c, d)
 and in the second, b = max(a, b, c, d).

 Suppose a = min (a, b, c, d). If a < b, c, d, set h to be the identity of {b, c, d}
 and h(a) = e, where e <min(b + c - d, a). Otherwise (if a is not the unique

 minimum value), let h be the identity function as a = b =* c > d, a = c - b > d,
 a = d > c =a = c =b > d. Then, h o f is supermodular on X. A similar argu-
 ment applies when b = max(a, b, c, d). Q.E.D.

 The above lemma provides the heart of a characterization of quasisupermod-
 ular functions, suggesting a necessary and sufficient condition.

 THEOREM 8: Let X be a lattice and f: X -* 1R. Then f is quasisupernmodular if
 and only if there exists some g: lR x X x X - lR such that (i) g(r, x1, X2) is strictly

 increasing in r for every fixed (X1,X2)EX2 and (ii) for every xI,x2eX,
 g(f(x), X1, X2) is supermodular in x on the sublattice {X1, X2, X1 V X2, X1 A X21.
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 166 P. MILGROM AND C. SHANNON

 PROOF: One direction follows from the preceding lemma. For the other, sup-
 pose such a transformation g exists and that x, x' e X are such that f(x)>
 (>)f(x v x'). Then g(f(x), x, x') > (>)g(f(x v x'), x, x'), and g supermodular
 on {x, x', x V x', x A X') =; g(f(x A X'), x, X')> (>)g(f(x'), x, x')Y. Then since g
 is strictly increasing on this lattice, f(x A x') > (>)f(x'). Q.E.D.

 Similarly, one can establish the following theorem.

 THEOREM 9: Let X be a lattice and T a partially ordered, finite set and f:

 Xx T -- lR. Then f has the single crossing property if and only if there exists g:
 lR x X2 x T --; R such that g is increasing in its first argument and for all x > x2
 in X, g(f(x, t), X1, X2, t) has increasing differences in (x; t) on the set {X1, X2} X T.

 As a particular case of Theorems 8 and 9, given a function f: X x T-- lR, if
 there exists a function g: R x T -> R such that g is increasing in its first
 argument for every t and such that g(f(x, t), t) is supermodular in x and has
 increasing differences in (x, t), then f is quasisupermodular in x and satisfies
 the single crossing property in (x, t). When this condition holds, we call the
 function f an extended supermodularizable function. A monopoly pricing prob-
 lem in the next section illustrates the application of such functions.

 Although supermodularity of the objective function is never necessary for
 monotone comparative statics, in some problems characterized by separable
 objective functions, supermodularity of one term may sometimes be necessary in
 order for the objective function to be quasisupermodular or satisfy the single
 crossing property.

 THEOREM 10: Let f: R;'n X Rl -- R. Then f(x, t) + p *x is quasisupermodular in x
 and has the single crossing property in (x; t) for all p E R' if and only if f is

 supermodular. If ff( ) is nondecreasing in x, then f(x, t) - w x is quasisupermodu-
 lar in x and has the single crossing property in (x; t) for all nonnegative w E R n if
 and only if f is supermodular.

 PROOF: If f is supermodular in (x, t) then g(x, t, p) f(x, t) + p -x is super-
 modular and therefore quasisupermodular in (x, t, p), so it also has the less
 restrictive properties described in the theorem.

 If f is not supermodular in x, then (suppressing the argument t) there exist
 some x and y so that f(x) + f(y) > f(x V y) + f(x A y). Choose p so that
 p* [x - (x Ay)] + f(x) -f(x A y) = 0. By inspection, for this choice of p, f + p
 x is not quasisupermodular.

 Similar arguments cover the other cases. Q.E.D.

 Dissection

 In problems with a single real-valued choice variable, the objective function is
 always quasisupermodular in that variable, and one only needs to verify that the
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 MONOTONE COMPARATIVE STATICS 167

 single crossing property holds to apply our theory. The most flexible method for

 verifying that the single crossing property holds in such problems is the method

 of dissection. This method builds on the relationship between the single crossing

 property and the Spence-Mirrlees single crossing condition established in the

 previous section by separating the effects of changes in the choice variables into

 two effects and embedding the problem in a family of problems in which one of

 the effects remains unchanged. We do this by introducing the idea of a richly
 parameterized family of functions, which is a family that contains at least one

 member passing through any pair of points. Formally, {h(-; a): 1R -S R} is richly
 parameterized if for all (x', y') and (x", y") with x' ox", there is some a^ such

 that y' = h(x'; a) and y" = h(x"; a). For example, given any function h o: DR -1R,
 the family {ho(x) + a1x + aola E FRl21 is richly parameterized.

 THEOREM 11: Let U(x, y, t): R' -* lR be completely regular with Uy =A 0 and let
 h(-; a): R -*- R be a richly parameterized family. Then U satisfies the (strict)
 Spence-Mirrlees condition if and only if for all a, g(x; t, a) = U(x, h(x; a), t) has
 the (strict) single crossing property in (x; t).

 PROOF: Observe that whenever the single crossing property holds on a lattice,
 it also holds on all of its sublattices. Also, the function g(x; t, a) is the
 restriction of U to the sublattice {(x, y)ly = h(x; a)} with the lexicographic
 order. According to Theorem 3, if U is completely regular and satisfies the

 Spence-Mirrlees single crossing condition, it has the single crossing property, so
 g has the single crossing property in (x; t) as well.

 If the Spence-Mirrlees condition fails, then there exists an open rectangular

 neighborhood D c lR3 in which UL,/ I Uy I is decreasing in t. By Theorem 3, one
 may choose points (x', y', t') and (x", y", t') in D satisfying x' > x", t" > t',
 U(x', y', t') > U(x", y", t') and U(x', y', t") < U(x", y", t"). Choose a so that
 y' = h(x'; a) and y" = h(x"; a). Then g(x'; t', a) > g(x"; t', a) but g(x'; t", a) <
 g(x"; t", a), contradicting the single crossing property.
 The proofs for the strict cases are similar. Q.E.D.

 Theorem 11 studies how changing trade-offs affect comparative statics. Here

 the objective function can be expressed as depending on the variable x in two
 ways, one of which is of known sign. Suppose that known effect is negative.
 Optimization involves trading off that cost against the net benefit, if any,
 associated with the other effects of x. An intuitive principle is that a parameter
 change that increases the relative significance of any beneficial effects will lead
 to a higher optimal choice of x; the direct conclusion of Theorem 11 gives a

 formal statement of that principle. In the reverse direction, the theorem asserts
 that if there is a sufficiently rich parameterization of the costly effect, then no
 weaker condition guarantees monotone comparative statics for the whole pa-

 rameterized class.
 To illustrate the application of Theorem 11, consider the effects of a short

 run increase in the market size on the monopoly price. Let the number of

This content downloaded from 
������������69.131.152.3 on Tue, 13 Jun 2023 17:21:21 +00:00������������ 

All use subject to https://about.jstor.org/terms



 168 P. MILGROM AND C. SHANNON

 customers be N. The firm's problem is to choose the quantity q to sell per
 customer to maximize r(q; N) NqP(q) - C(Nq), subject to q E K. Without
 some restrictions on demand, one cannot ensure that this function is either
 supermodular in (q, -N) or concave in q. Nevertheless, the comparative statics
 analysis is simple: q*(N) is nonincreasing for all choices of K and P if the cost
 function C is convex, and nondecreasing if the cost function is concave. The
 properties of the demand function are irrelevant. On the necessity side, we may
 embed the firm's problem in a family of problems with inverse demand P(q) + p

 and costs C(q) + cq, where p, c > 0, by taking h(q; a1, a2)= qP(q) + alq + ta2
 where a1 = p - c, a2 is arbitrary, and U(x, y; t) = ty - C(tx). Then

 r(q; N, a1I, a2) = U(q, h(q; a,, a2); N). According to Theorem 11 and Theorem
 4, q*(N; a1, a2) is nondecreasing in N for all values for a1, a2, and K if and
 only if C is concave, and nonincreasing for all such values if and only if C is
 convex. No restrictions at all are imposed on the demand function P in
 reaching this conclusion.

 For a more elaborate application, consider the Bertrand model with differen-

 tiated products. Suppose there are N firms, indexed by n. The profit function
 for firm n is given by

 'Mn(Pn,P-n) -=PnDn[Pn,P-n] - Cn(Dn[PnsP-n])l

 where Pn is firm n's price, P-n is the vector of competitors' prices, Cn is a
 continuous, increasing function, Dn is continuously differentiable and decreas-
 ing in Pn and firm n's demand becomes increasingly inelastic with increases in
 P-n, that is, log(Dn(pn;p_n)) has increasing differences. The game with this
 specification for each firm was studied by Milgrom and Roberts (1990b) for the
 case of constant marginal costs. They showed that the objective function is then
 supermodularizable, which implies that it satisfies the single crossing property in

 (Pn; P -n) We extend this last conclusion to the case of nonlinear cost functions.
 To check the single crossing property directly for this case, fix two vectors of

 prices p' and p" with pn > pn and p'-n > P"n and for P-n E {P,n P"nL define
 c(p-n) and K(p-n) to equate CA(q) to qc(p-n) + K(p-N) for q E
 {Dn(Pn P -n), Dn(Pn P -)}P On the relevant domain, the profit function satisfies
 n(Pn IP-n) = (Pn - C(P-n))Dn(Pn P-n) - K(p -).

 There are two cases, depending on whether pn < c(P n) or Pn > C(P1 ). In
 the first case, since pn > pn, vn(pn,pQ-) > w (pn,P pQ). In that event, the single
 crossing condition is satisfied for these prices. For the second case, let

 U(Xx, P-n) = (y - C(P-n))Dn(XP -n) - K(p_n) and h(x) =x.4 Restrict y so
 that y > c(pf n). Then U is completely regular because it is nondecreasing in x.
 A routine calculation shows that U satisfies the Spence-Mirrlees condition on
 this domain if and only if c( ) is nondecreasing, which occurs if the goods are

 4 We may treat p - as a scalar variable since its values in this analysis form a chain.
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 MONOTONE COMPARATIVE STATICS 169

 substitutes and C is convex or if the goods are complements and C is concave.5

 With either combination of assumptions, the single crossing property is satisfied

 for any specified prices.

 We shall study the implications of this property for equilibrium in Bertrand

 models in Section 5.

 4. METHODS FOR APPLICATIONS

 The method of dissection just discussed is one of three main techniques for

 transforming problems into forms where our theorems apply. Two other impor-

 tant techniques, aggregation and selective ordering, and two secondary tech-

 niques, parameter contingent transformations and composite functions, are

 described in this section.

 Aggregation

 The most important method is based on the idea of aggregation, which has
 been used repeatedly in the past by other researchers. Hicks used aggregation in

 the form of composite commodities to simplify his treatment of consumer and
 producer theory; Koopmans used it when he introduced recursive utility func-
 tions that allowed future consumption to be considered as an aggregate against

 which to trade off current consumption; and Topkis (1978) used it in his
 dynamic programming formulation of network flow problems to trade off flows

 on one arc against the aggregate of the substitute flows. Indeed, as we use the
 term, "aggregation" is synonymous with dynamic programming.

 For our purposes, the basic principles are expressed by the following two
 results.6

 COROLLARY 3 (Aggregation Principle): Let X be a lattice, T a partially ordered
 set, Y an arbitrary set with WcY, f: XxYx T -> , and x*(t,S) be

 arg maxx E s max y e W f(x, y; t). Then x* (t, S) is monotone nondecreasing in (t, S)
 if and only if g(x; t) maxy w f(x, y; t) is quasisupermodular in x and satisfies
 the single crossing property in (x, t).

 PROOF: This follows immediately from Theorem 4. Q.E.D.

 COROLLARY 4: Let f: lR'2 -> R1 and h: R x Y -R and define x*(t, S, p) =
 argmaxxes maxyew f(x; t) + h(x, y) + px. Then x*(t, S, p) is nondecreasing in t
 for all S c R and all p c R if and only if f is supermodular. If f(x; t) + h(x, y) is

 5 Intuitively, c(p_n) is the average incremental cost over an interval of outputs that depends on
 P-n. If the goods are substitutes, then the limits of the range are increasing and so the average
 incremental costs increases if C is convex. If the goods are complements, then the limits are
 decreasing and cost increases if C is concave.

 6 See also the related "Reduced Forms Theorem" of Milgrom, Qian, and Roberts (1991).
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 170 P. MILGROM AND C. SHANNON

 nondecreasing in x for all y, then x*(t, S, p) is nondecreasing in t for all S c R and
 all p < 0 if and only if f is supermodular.

 PROOF: Since every function of one real variable is quasisupermodular,

 x*(t, S, p) is nondecreasing in S without any conditions on f. Consequently,
 being nondecreasing in (t, S) is logically equivalent to being nondecreasing in t

 for all S. Now apply Corollary 3 and Theorem 10. Q.E.D.

 Corollary 3 makes it possible to focus attention on the variable x when
 monotone comparative static conclusions about y are unavailable. Equally

 important, it eliminates the constraint set W from the problem, which is

 necessary to study situations where x*(t, S, W) is monotone in (t, S) but not in
 W. The historical roots and theoretical significance of the aggregation principle
 are discussed in more detail in the second example below.

 The direct implication of Corollary 4 formalizes the intuitive principle that
 increasing the marginal return to a single variable x in an optimization problem
 leads to a higher optimal value of that variable. The reverse implication
 concerns a family of models in which the objective is the sum of two terms, one
 parameterized by t and the other richly parameterized by p, so that the
 marginal returns to x in the second term vary over a wide range. In that case,

 unless increases in the parameter increase marginal returns over all ranges of
 the variable, it is not possible to draw the same conclusion about monotone

 comparative statics without imposing specific and restrictive assumptions about
 the parameter p.

 Aggregation plays a central role in analytical methods based on lattice theory.
 Indeed, according to Theorem 1, the sublattices of R n include only sets that can

 be described by constraints involving at most two choice variables at a time. In a
 number of economic problems such as consumer decision problems with three
 or more goods, consumption-savings problems over an infinite horizon, or
 network flow problems requiring the total flow from three or more sources to a
 final node to satisfy that node's requirements, the usual formulation of the
 problem involves constraints on more than two variables simultaneously. To

 apply the lattice methods, one approach is to reformulate the problem, isolating
 a variable of interest such as consumption or investment or a flow variable and
 representing the constraint as one involving just that variable and an aggregate
 of the others. We shall illustrate this approach in the context of the Ramsey-
 Cass-Koopmans consumption-investment model.7

 Consider the problem of maximizing the utility of consumption over an

 infinite horizon starting with initial resources ko and assuming that, in any
 period, s units of savings can be converted into f(s) units of resources at the
 start of the next period. A final constraint is that 0 < s < k. Koopmans gave the
 most general tractable formulation of this problem, assuming that utility for

 future consumption was stationary over time, independent of past consumption

 7 See Cass (1965) and Koopmans (1960, 1965).
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 Good #2

 A '

 .... . .X .. .. .. . .

 Good #.

 FIGURE 1.-Good #2 is normal when the indifference curve is flatter at B than at A.

 levels, and involved some "impatience," and concluding that it could be written
 in the form: U(c0, c1, ... ) = W(c0, u) where u = U(c1, c2, ... ). Notice that u is
 an aggregate which substitutes in the problem for the details of future consump-
 tion. We assume that W1, W2 > 0.

 One important question in this theory is: When will current savings be a
 nondecreasing function of current levels of capital? The most general known
 answers have been obtained using revealed preference theory,8 but a straight-
 forward application of the ordinal theory yields an alternative answer: regard-
 less of the technology f, savings will be a nondecreasing function of current
 capital if, in the consumer's aggregate preference function W, the future
 consumption aggregate u behaves like a normal good. Figure 1 illustrates the
 normal goods condition for the standard convex consumption model with linear
 budget sets. Given the utility function W, good #2 will be a normal good for all
 prices and income levels if and only if W1/W2 is a decreasing function of
 consumption of the first good, where subscript i denotes a partial derivative
 with respect to argument i. As we show below, the same concept can be applied
 without convexity restrictions to this consumption-savings model to yield the
 desired comparative statics conclusions.

 Given current resources k and savings s, current consumption is k - s and
 the maximum utility of future consumption is some amount u(s), determined
 jointly by the technology and the consumer's utility function. The consumer's
 problem is one of maximizing W(k - s, u(s)). Applying the method of dissection
 (Theorem 11), with U(x, y, t) = W(t -x, y) and h(-) = u( ), we find that a
 sufficient condition for s*(k) to be nondecreasing is that W1(c, u)/W2(c, u) be
 decreasing in c, that is, that the utility of future consumption enters W like a
 normal good. The method is also helpful for identifying conditions under which
 this normal goods assumption is necessary, but we do not pursue that here.

 8 See Benhabib, Majumdar, and Nishimura (1985).
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 Selective Ordering

 As we mentioned several times above, the lattice theoretic approach to

 monotone comparative statics relies critically on the notions of order imposed

 on the choice variables and parameters. The particular notions of order used

 determine the meanings of the single crossing property and quasisupermodular-

 ity and also the meaning of the monotone comparative statics conclusion. By

 appropriately defining an order on the choice variables and parameters, one can
 make uise of the full flexibility of this theory.

 For example, consider the standard neoclassical model of the firm with two

 inputs, capital and labor. The firm solves

 Maximize pf(k,l) -wl - rk subject to kEeK and l eL

 where the sets K (nd L represent any constraints on the availability of capital
 or labor. The sets K and L need not be convex.

 It is well known that increasing w reduces 1. In the ordinal theory, this

 follows from Corollary 4 and Theorem 4 where the parameter is -w rather
 than w. The mixed partial derivative of the objective function with respect to 1

 and - w is positive, so 1 is a nondecreasing function of - w, that is, a
 nonincreasing function of - w. The other direct price effects (r on k and p on

 output) follow similarly from Theorem 4 and Corollary 4.
 To consider whether the inputs are substitutes or complements, we focus on

 the mixed partial derivative fkl. If fkl >? 0, then the objective function is
 supermodular in (k, 1, - w, - r), so increases in r lead to reductions in both k
 and 1. According to Corollary 4, there is no weaker sufficient condition to
 ensure, for example, that k*(w) is nondecreasing without more information
 about K or r. If fkl < 0, then the objective function is supermodular in
 (k, -1, w, - r) so, for example, an increase in w leads to an increase in k. Once
 again, no convexity is used9 and the most general possible result is obtained.

 The last standard question in the theory concerns the output expansion path,

 for which the standard intuitive analysis uses production isoquants. Thus, define
 L(k, x) to be the minimum amount of labor required to produce (at least) x
 units of output using k units of capital. The objective is then px - rk - wL(k, x).
 By Theorem 4 and Corollary 4, k*(x) is nondecreasing (capital is a normal
 input) if LkX < 0 and k*(-x, K) is nondecreasing if LkX > 0. These conclusions
 hold even if capital is indivisible-a basic fact about demand theory which

 appears to have been previously unknown. Corollary 4 goes further, asserting
 that there is no weaker sufficient condition to imply these conclusions if the cost
 of capital r and the possible lumps of capital K are to be left unspecified. The
 interpretation of the conditions is straightforward: Lk is the slope of the

 9 Note that the standard approach of differentiating dual profit functions depends on those
 functions being differentiable. Convexity of the underlying technology is a necessary but not
 sufficient condition for such differentiability. The unelaborated dual profit function approach is
 therefore less general than either the ordinal approach or the revealed preference approach.
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 isoquant for output level x at capital level k, so the normal inputs condition is

 just the usual one about marginal rates of transformation.

 Selective ordering does not refer only to changing signs of variables. It may

 also correspond, for example, to a propitious change of basis in a linear space,

 such as using capital levels rather than investment flows as the choice variables
 in a multiperiod capital investment problem. See the Arm's Race Game in

 Milgrom and Roberts (1990b) for an example of that sort.

 Parameter Contingent Transformations

 According to Theorems 8 and 9, quasisupermodularity and the single crossing
 property hold exactly for those functions for which there exists a parameter

 contingent transformation that makes the functions supermodular or have
 increasing differences on certain limited sets. Frequently, it is easy to find
 parameter-contingent transformations that apply over the whole domain of the
 function. The two that have arisen most often in our experience are the log
 transformation, which converts a multiplicatively separable problem into an
 additively separable one to which Corollary 4 applies, and the scale transforma-
 tion. We illustrate both here.

 For example, consider the problem of a monopolist who sets a price p facing
 demand D(p) and with constant marginal cost c. The firm's profit is (p -
 c)D(p). This is multiplicatively separable, and its logarithm is log(p - c) +
 log(D(p)). This is (strictly) supermodular in (p, c) regardless of the demand
 function D, so every selection from the optimal pricing function p*(c) is
 nondecreasing, and the same is true even if prices are constrained to be chosen
 in discrete monetary units. The intuition is that an increase in c increases the
 marginal rate of return to p (rather than the return itself) and so favors an
 increase in price.

 To illustrate the scale transformation, we return to the example of a short run

 increase in the market size on the monopoly price which we treated previously
 using the method of dissection. The family of objective functions studied was
 v = Nq(P(q) + p) - C(Nq) - Ncq. We divide this objective by N to obtain the
 objective function q(P(q) +p) - C(Nq)/N - cq. This is to be maximized by

 choosing q e K. By Corollary 4, q*(N) is nondecreasing for all values of p, c,
 and K if and only if - C(Nq)/N is supermodular, that is, if and only if C is
 concave. Similarly, q*(N) is nonincreasing for all values of p, c, and K if and
 only if C is convex.

 In smooth problems with a single real choice variable, these transformation
 methods apply only if the method of dissection also applies,10 so in one sense
 the method of dissection subsumes these methods. However, the transformation
 methods often reflect the intuition of the analysis more clearly than the method
 of dissection. In the scale transformation application, for example, an obvious

 10 In the monopoly pricing problem discussed using the log transformation, the method of
 dissection can be applied by taking U(x, y, t) = (x - c)y and h(x) = D(x).
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 174 P. MILGROM AND C. SHANNON

 intuitive analysis is that when costs are convex, increasing the market size is very
 much like increasing the marginal cost of units for an individual customer, and
 higher marginal costs naturally lead to lower quantities and higher prices if P(-)
 is downward sloping. The first step of the intuitive logic corresponds to the
 formal step of dividing the objective by N in order to focus on the per customer
 objective function; the second to noticing that increases in N raise marginal
 cost, that is, verifying that the transformed objective is supermodular in (q, -N).
 In both the intuitive and ordinal logic, the next step is to draw the comparative
 statics conclusion. This formal agreement closely mirrors the economic intu-
 ition.

 Composite Functions

 The last two examples have been one-variable choice problems. Even when
 the multivariate theory does not apply directly, multivariable choice problems
 can often be reduced to a sequence of single variable choice problems. The
 problem is then reduced to one of composing monotone functions. The solution
 of the Ramsey-Cass-Koopmans problem can be interpreted in this way.

 As another example, consider the short-run problem of a monopolist who
 finds a new and less expensive way of expanding its market, perhaps by adding
 new outlets or by some more effective advertising or promotion. The market
 size N, a parameter in the previous monopoly pricing example, is a choice
 variable in this problem. The firm's problem is to choose (q, N) to maximize
 NqP(q) - C(Nq) - K(N, t) where K is submodular (KNt< 0). By Corollary 4,
 N*(t) is nondecreasing, and by the previous analysis, q*(N, t) = q*(N) is
 nonincreasing provided that C is convex. If, in addition, the demand function P
 is decreasing, then the firm's response to the change is to raise its price.

 5. EQUILIBRIUM THEORIES

 So far, we have limited attention to comparative statics for optimization
 problems. However, the ordinal approach is also useful for equilibrium prob-
 lems, and in particular, to games with strategic complementarities, studied by
 Bulow, Geanakoplos, and Klemperer (1985), Milgrom and Roberts (1990b),
 Topkis (1979), and Vives (1990). These papers develop the notion of supermod-
 ular games, a class of games in which the players' strategy sets Sn are compact
 sublattices and the payoff functions 'rn(Xn, X-n, t) are upper semicontinuous in
 the player's own strategy xn, continuous in the competitor's strategies x,,n and
 supermodular in (xn, xm)(m o n) and (xn, t) for any fixed values of the other
 variables. A large number of the most studied noncooperative games in eco-
 nomics have this structure, as demonstrated by the wide range of applications
 found in the papers cited above. In addition, this class of games has a series of
 useful properties, including existence of pure strategy equilibria, monotone
 comparative statics on equilibrium sets, coincidence of the predictions of
 various solution concepts (including Nash equilibrium, correlated equilibrium,
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 and rationalizable strategies), stability under adaptive learning, and certain

 welfare properties, to name the main ones. As we will see, these properties can
 all be generalized to a larger class of games.

 Consider the following general environment in which a certain class of games
 will be defined. A nonempty set N indexes the players, and each player's

 strategy set is Sn, partially ordered by >n . The space of strategy profiles is then
 S, and player n has payoff function rn(Xn, x-n). Such a game has (ordinal)
 strategic complementarities if for every n:

 (1) Sn is a compact lattice;
 (2) 7rn is upper semi-continuous in xn for x-n fixed, and continuous in x-n

 for fixed xn;
 (3) w,n is quasisupermodular in xn and satisfies the single crossing property in

 (xn; x,).
 Certainly the results of the previous sections will imply that in a game with

 strategic complementarities, players' best response correspondences will be
 monotone nondecreasing in the strategies of the other players; hence any
 conclusion in the theory of supermodular games which relied solely on this
 feature will also be true in this larger class of games with strategic complemen-
 tarities. However, Milgrom and Roberts (1990b) established certain results
 concerning the coincidence of solution concepts and stability under learning
 dynamics that depend not just on the monotonicity of the best response
 correspondences but also on the more detailed structure of these games. The
 main results of this section show that these conclusions are still valid for this
 larger class of games. Stating the main results requires recalling a definition: the
 serially undominated strategies in a game are those that remain after iterated
 elimination of pure strategies that are strictly dominated by other pure strate-
 gies.

 THEOREM 12: Let F be a game with strategic complementarities. Then Vn E N,
 there exist strategies X and x* which are the smallest and largest serially
 undominated strategies for player n. Moreover, the pure strategy profiles x*

 (x*n; n cN) andx* (x; n eN) are Nash equilibria.

 To prove Theorem 12, more notation and a lemma are required. Given x c S,

 let B*n(x) denote the smallest best response of player n to x_,, and Bn*(x)
 denote the largest best response to x-n in a game with strategic complementari-
 ties, which are well-defined by the results of the previous sections and the

 assumptions of continuity and compactness. Let B* (x) (B * n(x); n c N) and
 B*(x) (Bn*(x); n c N). For T c S, define

 Un(T) {Xn E SnI VX,n ESn, 3x^ e T such that w,n(xx,x,,)

 rrn( Xt , aen)ot s

 Then Un(T) represents the set of strategies of player n that are not strongly
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 176 P. MILGROM AND C. SHANNON

 dominated when the player plays against strategies in T. Let U(T) (Un(T);
 n E N) and U(T) [inf {U(T)}, sup {U(T)}].

 LEMMA: Let F be a game with strategic complementarities and z *, z* E S be
 such that z* <z*. Then sup{U([z*,z*])}=B*(z*) and inf{U([z*,z*])}=
 B*(z*); equivalently, U([z*, z*]) = [B*(z*), B*(z*)].

 PROOF: By definition, B*(z*), B* (z ) E U([z *, z*]), hence

 [B*(z*),B*(Z*)] C!U([z*,z*]).
 For the converse, we must show that if zi4[B*(z*,B*(z*)], then z14

 U([z*,z*]). There are two cases, according to whether z 1 y*=B*(z*) or
 Z - Wy*B* (z*)

 Suppose for some n, zn - Yn and let x E [z*,z*]. If 7n(Zn X-n)-7n(ZnA
 yn,*x_)> 0, then by the single crossing property, wn(z,z )- n(zn A

 Yn*, Z*n) > 0. Then, by quasisupermodularity, rn(Zn V Yn' n) - n(y nvy Z -n) >0
 But zn Vy * >y * (because zn Y so by the definition of Yn* I n(Zn V y* Z*n)
 -wrn(yYn*, z*) < 0, a contradiction. Therefore, wn(z, x-)- n(zn A Yn x) <
 0. Thus z,/ Ay* strongly dominates zn against every xe [z*,z*]. Hence
 z 14 U([ z * z z* ]).

 A similar argument shows that if zn > Yn* for some n, then zn V yn* strongly

 dominates zn against strategies in [z * , z* ].
 Therefore U([z *, z* ]) = [B* (z * ), B*(z* )]. Q.E.D.

 The proof of Theorem 12 proceeds exactly as the proof of the analogous
 result in Milgrom and Roberts (1990b), relying solely on the preceding lemma,
 the monotonicity of the operator U, the definition of serially undominated
 strategies, and continuity. See Shannon (1990) for additional details.

 The results of this extension have significance beyond game theory. For the
 application to general equilibrium theory, we extend two more of the theorems
 of Milgrom and Roberts (1990b) to the larger class of games with (ordinal)
 strategic complementarities. The first is an equilibrium comparative statics
 proposition.

 THEOREM 13: Let rT = {N, (Sn), 7rn(xn, x_n, t)n e N} be a family of games with
 strategic complementarities such that wn(xn, x-n, t) satisfies the single crossing
 property in (xn; x ,, t) for all ne N. Then the largest and smallest pure strategy
 equilibria (and serially undominated strategy profiles) x*(t) and x8(t), are mono-
 tone nondecreasing functions of the parameter t.

 The second concerns the stability of adaptive learning processes. In intuitive
 terms, a sequence is consistent with adaptive learning by the players if they
 eventually abandon strategies that perform consistently badly in the sense that
 there exists some other strategy that performs strictly and uniformly better
 against every combination of what the competitors have played in the not too
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 distant past. Formally, a sequence {x(t)) c Fl n E NSn is consistent with adaptive
 learning if for all E > 0 and all dates T there is some later date T' such that for

 all t > T' and all strategies zn and zn E SE , if wn(Zn, X-n(S)) + E < wn(Zn' X-n(S))
 for all s E [T, t] then Xn(t) # Zn,

 THEOREM 14: For finite games with strategic complementarities, if {x(t)) is
 consistent with adaptive learning, then there is some date T after which x * < x(t)
 x*. For finite or infinite games with strategic complementarities, if the pure
 Nash equilibrium is unique, then a sequence {x(t)) is consistent with adaptive
 learning if and only if it converges to the unique equilibrium.

 In Section 3, we established that the payoff functions in certain differentiated

 product Bertrand oligopoly models satisfy the single crossing property in

 (pn; P -n). The functions are also quasisupermodular in Pn, because the choice
 variable is one-dimensional. So Theorems 12-14 apply.

 A second application of the theorems is a game derived from the general

 equilibrium model with gross substitutes. By applying the theorems to this game,

 we can quickly prove the existence and uniqueness of equilibrium, improve the
 previous best known stability results, and derive the main comparative equilib-
 rium results for that class of models.

 Consider an economy with L + 1 goods. The excess demand function for

 good n is written dn(Pn, P - n) and is assumed to be homogeneous of degree
 zero. Arrow and Hurwicz (1958) and Arrow, Block, and Hurwicz (1959) estab-
 lished that certain continuous-time, smooth tatonnement-like processes are
 globally stable price adjustment processes if the economy is characterized by

 gross substitutes, that is, if dn is continuous and decreasing in Pn and continu-

 ous and monotone nondecreasing in P-n for every n.
 A fictional game can be constructed from this economy as follows. Fix one

 good, say good 0, to be numeraire. Let there be a market maker for each other
 good n who announces a price for that good. The market maker's payoff is

 defined to be Wn(PnI P-n) = - Idn(Pn, P-n)I; that is, the market maker wants to
 come as close as possible to clearing the market. When the economy exhibits
 gross substitutes, it is routine to verify that the payoff function has the single
 crossing property. Several important conclusions follow.

 First, using Theorem 12, one may reestablish the well known result that an
 equilibrium exists and is unique. If there were multiple equilibria, there would

 exist an equilibrium with the highest prices 5 and one with the lowest prices 5p,
 where p > j. But the market for the numeraire good could not clear in both
 cases, since its demand is decreasing in these prices.

 Second, in view of Theorem 14, any process consistent with adaptive learning
 by the individual market makers converges to the competitive equilibrium. This
 applies not just to continuous-time processes nor just to processes that use only
 current demand information. Both restrictions were imposed in the previously
 cited studies.

This content downloaded from 
������������69.131.152.3 on Tue, 13 Jun 2023 17:21:21 +00:00������������ 

All use subject to https://about.jstor.org/terms



 178 P. MILGROM AND C. SHANNON

 Finally, one can use Theorem 13 to answer comparative statics questions

 about the equilibrium. Suppose that for some consumer j, all the goods are
 normal, and consider the effect of increasing consumer j's endowment of the
 numeraire good. Indeed, let the parameter t refer to consumer j's endowment
 of the numeraire and let w0(p, p0; t) = - Id0(p0, p ; t)I. By definition of
 normality, all the non-numeraire demands dn rise with t, so we have a
 parameterized family of games with the single crossing property. It follows from
 Theorem 13 that the equilibrium price vector is a nondecreasing function of t.

 Since the choice of numeraire is almost arbitrary (the numeraire must not be in

 excess supply at equilibrium), the same kind of conclusion applies for each of
 the goods.

 6. CONCLUDING REMARKS

 The theory of monotone comparative statics, even for optimization models, is

 still unfinished. One priority is the analysis of economic applications involving
 stochastic models. The first and second-order stochastic dominance relations,
 Blackwell's informativeness order for information systems, and the likelihood
 ratio order are among ones that could be usefully integrated with the single

 crossing and/or supermodularity conditions. Notions of "more correlated,"
 which have proved relevant in welfare economics, have also been connected to

 supermodularity (Meyer and Mookherjee (1987)), but the connections are
 incomplete.

 The comparative statics of equilibrium models is another subject ripe for
 study using the ordinal approach. Initial efforts in this direction have been made
 by Milgrom and Roberts (1992) and Villas-Boas (1992). Our own recent work
 (Milgrom and Shannon (1992)) applies the ordinal approach to study another
 equilibrium concept, exploring the structure and comparative statics of the core
 in a class of cooperative games.

 Although we have focused on the standard regression-type comparative
 statics conclusions developed in this paper, multivariate comparative statics may
 also be important as an explanation of endogenous covariation in economic
 models. Indeed, if all of the components of a vector of endogenous variables x
 are nondecreasing functions of the same vector of independent shocks 0, then
 the endogenous variables will be positively correlated, and in fact will satisfy the
 more demanding statistical relationship called association. This idea has been
 applied with some success to explain the clustering of certain attributes in the
 theory of the firm (Milgrom and Roberts (1990a), Holmstrom and Milgrom
 (1992)) and seems a natural candidate for building and interpreting models of
 macroeconomic comovements across the business cycle.

 Dept. of Economics, Stanford University, Stanford, CA 94305-6072, U.S.A.
 and

 Dept. of Economics, University of California-Berkeley, Berkeley, CA 94720,
 U.S.A.

 Manuscript received May, 1991; final revision received April, 1993.
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 APPENDIX: EXISTENCE OF A MAXIMUM

 So far, we have ignored the issue of existence of maximizers. In a finite dimensional setting, the
 assumptions of continuity and compactness are not overly restrictive and are relatively easy to check.
 In an infinite dimensional setting, however, the question of choice of topology is a more serious one.
 For our theory, the key is to connect the order-theoretic notions of completeness, quasisupermodu-
 larity, and convergence along chains with the topological notions of compactness and continuity.
 What links these ideas is the order interval topology, which is the topology resulting from taking the
 order intervals ([a, b], [a, + oc), (-00, a]) of the space as a sub-basis for the closed sets of the
 topology. The two key theorems are due to Frink (1942) and Veinott (1989).

 THEOREM Al (Frink): A lattice X is complete if and only if it is compact in the order interval
 topology.

 THEOREM A2 (Veinott): Let {ST) be a net of nonempty sets that is weakly ascending, that is, such
 that if T' > T, and x E ST, x' E ST', then either x V x' E ST or x A x' E S. Then there exists a monotone
 selection {x(T)) from {ST).

 To apply Theorem A2, observe that if f: S a-* R is quasisupermodular, then La {x If(x) > a) is
 weakly ascending in a. The following theorem establishes that for quasisupermodular functions,
 upper semi-continuity along chains implies upper semi-continuity in the order interval topology.

 THEOREM A3: If f: X -- RI is quasisupermodular and if for every chain C c X,
 lim SuPx E C, x Tsup(C) f(x) <f(sup (C)) and lim supxr c, x Inf(c) f(x) <f(inf (C)), then f is upper
 semi-continuous in the order interval topology.

 PROOF: Let S {x cE Wlf(x) > a), and suppose the net {xT) X* It suffices to show f(x*) > a.
 Define SpT TS nl {x I infa> p3 Xa S X < SUPa>T Xa). By Veinott's theorem, for T fixed, there exists a
 selection y(3, r) which is monotone nondecreasing in 13. Let y(Q) = lim sup y(8, T). Since f(y(/3, r))
 > a, by the condition of upper semi-continuity along chains, f(y(T)) > a. Let TT = S n {x Ix* < x <
 supa, > xa). Since y(T) >x*, the sets TT are nonempty. By Veinott's theorem, there is a nonincreas-
 ing selection {zT) from (TT, with f(Z(T)) > a. Then z(-r) * x*, so upper semicontinuity along chains
 implies that f(x*) > a. Q.E.D.

 Combined with Frink's theorem and the second corollary of the monotonicity theorem, this
 theorem says that a quasisupermodular function on a complete sublattice that is upper semicontinu-
 ous along chains is upper semicontinuous in the order interval topology and hence has a nonempty,
 compact set of maximizers. Since the set of maximizers is also a sublattice, Frink's theorem implies
 that it is a complete sublattice, and hence has a greatest and least element. These observations are
 summarized in the following theorem.

 THEOREM A4: Suppose that f: X -- Rf is quasisupermodular, that for every chain C c X,
 limsupxEc,xTsup(c))f(x)<f(sup(C)) and limsupxEc,xlinf(C)f(x) <f(inf(C)), and that S is a
 complete sublattice of X. Then arg maxxE f(x) is a nonempty, complete lattice.

 The usefulness of these theorems lies in the fact that, for infinite dimensional spaces, it may
 often be easier to check that a function is upper semi-continuous along chains, and that its domain
 is a complete lattice, than to determine whether it is continuous and its domain compact in some

 appropriate topology. For example, the well-known results that for 1 <p < 00, intervals [a, b] in Lp
 are complete lattices and that Lp-continuous functions are continuous in the order interval topology
 (see, e.g., Aliprantis and Burkinshaw (1985)) give rise to the conclusion that Lp-continuous,
 quasisupermodular functions achieve a maximum on any Lp-interval [a, b]. In contrast, the maxi-
 mum does not necessarily exist if one replaces quasisupermodularity by concavity.
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