Optimal Sequential Search Among Alternatives

Michael Choi*f Lones Smith?

University of lowa University of Wisconsin-Madison

October 2016

Abstract

We explore costly sequential search among finitely many risky options, and
an outside option. Payoffs are the sum of a known and hidden random factor.

(a) We resolve a long open question about how riskier payoffs impact search
duration: expected search time is higher for more dispersed idiosyncratic noise.

(b) Since options differ ex ante, we incorporate selection effects into search:
Counterintuitively, with few options, the quitting chance falls if search costs
rise; also, while stopping rates rise over time, earlier options are recalled more.

(c) We find that the stationary search model is a misleading benchmark: For as
the number of options explodes, the recall chance is bounded away from zero
if the known factor has a distribution without a thin tail (eg. exponential).

(d) A special case of our model captures web search engines that rank order
options: We prove that the click through rate — the chance of initiating a search
— is a poor quality measure since it falls in accuracy for expensive goods.
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1 Introduction

We develop a general theory of search among finitely many options. Solving an open
question, we determine when search duration rises in risk. By positing a tractable new
model where option payoffs additively reflect hidden and observed random factors,
we allow for the analysis of selection effects. This alters basic search theory insights
— for example, recall of options may persist in the infinite horizon limit. A special
case of our model yields a tractable framework of web search with new insights.

Our paper enhances the pure theory of sequential search, which has not advanced
much since Weitzman’s influential 1979 search model.! Despite a nonstationary search
model with finitely many known distinct sampling distributions, Weitzman precisely
characterized which current or prior option should next be searched using a simple
index rule. Quite unlike stationary search, he found that one optimally sometimes
wishes to recall a previously explored option. While both elegant and conceptually
innovative, Weitzman’s model offered few other new behavioral predictions.

We reformulate his framework to address this shortcoming. We introduce and fully
solve a nonstationary sequential search model that yields a rich set of comparative
statics, that is also general enough for a range of applications. We assume one known
outside option, and finitely many inside options; payoffs are the sum of independent
random known and hidden factors, drawn from logconcave distributions. Ez post, our
known factors are fixed, and this yields a special case of Weitzman (1979). Here, a
searcher optimally rank orders options by their known factors, and then explores them
in this order, until either quitting search, recalling a previously explored option, or
exercising the current option. Our additive two factor formulation sheds light on the
probabilities of these three stopping events. Notably, we derive the first comparative
statics for recall probabilities and for search duration in sequential search theory.

Since our known factors are random, we also generalize Weitzman (1979), ez ante.
For his sampling payoff distributions are themselves random objects in our model.
The resulting search model is ideal for estimation — as consumer preferences and
information about products searched are unobservable to econometricians. Since we
prove that options are explored in order of the known factor orders, we characterize
search behavior ex ante, unconditional on preferences or information. Our predictions
are driven by selection effects that so far have not been well-captured in search theory.

A final special case offers a tractable model of web search. We assume that before

!Two notable exceptions are Olszewski and Weber (2015), who find a more general index rule,
and Doval (2013) who allows the searcher to freely exercise an unexplored option.



any ranking, option payoffs are independent Gaussian random variables. The search
engine then exploits its knowledge of web pages and user cookies (e.g. the PageRank
algorithm) to parse option payoffs into predicted (known) and idiosyncratic (hidden)
factors — and a more accurate search engine has a lower idiosyncratic variance and
higher predicted variance. Finally, it presents web pages to the user in order of
decreasing known factors. In this story, the user quits if he exercises his outside option.

With stationary search, the plot of the value function is initially constant at the
reservation prize, and then coincides with the 45° diagonal. This reflects how the
searcher surely rejects lower prizes and accepts larger prizes. In our world with recall,
this classic value plot is replaced by a strictly convex value function, whose slope is
strictly rising and equals the probability of eventually recalling the best prize seen
(Figure B) In other words, our nonstationary search model reveals a dual relationship
between values and recall rates in harmony with the stationary search model.

This best-so-far is the state variable for the searcher’s nonstationary dynamic
programming problem. Search stops when the best prize so far exceeds Weitzman’s
index, which captures future optionality. Early on, the index is high, and the searcher
chooses between the current option and further search. At some point, as the index
continues to fall, the optimal choice is to accept the current option or recall. To wit,
we prove that recall is exclusively a valuable option later in search.

In our first key contribution, we resolve the effect of a riskier prize distribution on
search behavior. While it is well-known that risk unambiguously profits the searcher,
its behavioral impact has long been ambiguous — even for stationary search, as
highlighted long ago in Mortensen (1987). For a riskier prize distribution not only

encourages more aggressive search, but also increases the weight in the favorable

prize tail. As outlined in §, the dispersive order — a ranking neither stronger
nor weaker than the standard mean preserving spread — offers sharp behavioral

predictions for search theory. Distributions rise in this partial order if all pairs of
percentiles grow farther apart. Specifically, the expected search time is higher and
the quitting chance lower given a more dispersed idiosyncratic noise (Theorems EI
and B) Notably, dispersion in our known factor has roughly the opposite effect:
Unless outside options are too large, the individual is more willing to initiate search
and less willing to continue searching with greater dispersion in the known factor
(Theorems E)

The second contribution is the introduction of selection bias. For since the un-
observed known factors are correlated top order statistics, the willingness to search

or explore the next inside option signals the known factors. In principle, this might



reverse intuitive comparative statics. For instance, one typically expects to search
less, and quit more often, when search costs jump up. But anyone who still searches
surely expects better inside options, and so is more likely to choose one. We argue
that search costs still encourage quitting (unlike an extreme case explored in §E) But
the selection effects intensify search over time, with a rising hazard rate of recalling
an earlier option and exercising a current one (Theorem @) In another manifestation
of selection effects, the options explored earlier are recalled more often (Theorem H)
These are the first positive general results on recall probabilities in search theory.
Our third contribution exploits our tractable treatment of the number of options.
While the infinite horizon model is the benchmark search model since McCall (1970),
here it poorly approximates a large finite number N of rank-ordered heterogeneous
options. Theorem B finds that the hazard rate of recalling a prior option falls in the
number of options, but need not vanish in the limit N — oo, and ignoring the recall
option strictly hurts the searcher. The recall option is critically important when the
known factor distribution lacks a “thin tail” — as with exponential payoffs. Only
with a thin tail does the limit recall hazard rate intuitively vanish. So recall is an
important search phenomenon, and stationary search is thus a misleading benchmark.
Our fourth major contribution is to web search, where a search means clicking
on a link. For this sub-model, we assume that our two random factors are Gaussian
random variables (and not merely log-concave). The chance of consuming web sites,
possibly recalling them, increases each period. But a more accurate search engine
yields opposing effects on search duration — it features more disperse known factors
and less disperse idiosyncratic factors. Proposition m resolves the tradeoff, and finds
that the quitting chance rises in accuracy for expensive goods, like furniture, and falls
in accuracy for inexpensive goods like books, whereas the expected search time moves
oppositely. The probability of initiating a search — the click through rate (CTR) —
moves analogously to the expected search time. This means that its common usage
as a ranking measure (eg. Experian Hitwise) is unjustified, since it is non-monotone
in accuracy. Search duration might increase or decrease when accuracy improves.
We also can draw more normative conclusions for the web search environment.
Inspired by Blackwell’s Theorem, the user’s value of the search engine information
rises in the accuracy. In Proposition E, we find that users with average search costs
and outside options derive the greatest value from the search engine. We then ask
how the search engine value changes in the number of options. In Proposition a, we
find a complementarity between the web size and the search engine accuracy, and a

substitutability between the web size and search cost. In other words, as the web


http://www.infoworld.com/t/search/surprise-bing-tops-google-in-search-accuracy-035

grows, the gains to a more accurate or easier to use search engine grow.

LITERATURE. When individuals only learn the next known factor but not future
known factors, our model is formally search with learning. Yet Rosenfield and Shapiro
(1981) showed that the optimal price search strategy need not entail a cut-off rule,
since expectations jump after prize draws. Our additive reward distribution escapes
this pathological possibility. More subtly, we find that a log-concave distribution
ensures that favorable prizes encourage further search — our selection effect.

Optimal sequential search models are sometimes used in the empirical industrial
organization. Kim et al] (2010) estimates Weitzman’s model with shopping data
from Amazon, and De Los Santos et al| (2013) estimate a sequential consumer search
model with learning. We complement this literature by fully characterizing optimal
search behavior given search costs, etc. But lately, empirical work has questioned the
applicability of non-sequential search models for web search. For instance, Dinerstein
et al| (2014) apply fixed sample size search models to study a search redesign by
eBay. Earlier, De Los Santos et al| (2012) studied the online market for books and
argued that fixed sample size search models better explain the data. In §@, we show
that selection effects allow us to rationalize their empirical findings in our sequential
search environment — for intuitively, low prices encourage continued price search.

A new literature on equilibrium web search models explores price formation and
market efficiency. For example, Baye and Morgan (2001) explore the equilibrium
price dispersion arises in a market where buyers and sellers choose whether to adopt
a search engine. Armstrong et al| (2009) and Armstrong and Zhou (2011)) study the
implications of consumer web search on sellers’ pricing strategies. Choi et al) (2016)
study an equilibrium version of our model where sellers post prices and buyers solve
an optimal sequential search problem. Finally, Eliaz and Spieglen (2016) consider a
two-sided matching problem with search frictions. They consider the optimal set of

search results that a search engine should return to maximize matching efficiency.

2 Riskier Search and Selection Effects: A Foretaste

A. Risk. Consider for simplicity McCall’s classic 1970 infinite horizon, job search
model. Naturally there is a stationary solution characterized by a reservation wage.
We explore how risk impacts search duration. With a discount factor 3, wage W ~ F,

and search cost ¢, the reservation wage is w(c) = —c+ S[F/( c)+ f wdF (w
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Figure 1: The left panel shows how a mean preserving spread in wages from W; to
W, ambiguously impacts the stopping hazard rate 1 — F;(w;(c)) (shaded areas): For it
pushes more mass to the tails, and raises the reservation wage w;(c). The right panel
depicts the selection bias in a one-stage job search problem with a random wage W and
random outside option U. The worker searches iff U < w(c), and accepts any job with
wage W > U, i.e. above the diagonal line. As the search cost rises from ¢; to ¢, the
reservation wage rises from w(cy) to w(ce). With unconditional probabilities A; and
R; as labeled, the chance of accepting a job falls from A /(A; + Ry) to As/(A2+ Ra).

Then

o0

(1- Bya(e) = —c+ p / 1 — F(w)ldw. (1)

w(c)

The effect of a mean preserving spread of W on the hazard rate of stopping 1 —
F(w(c)) is ambiguous in general because there is more mass in the right tail of " but
w(c) also rises (left panel of Figure El) We consider instead an order which globally
spreads out probability weight. If F; is the cdf of W;, then W5 is more dispersed
than Wy if every pair of quantiles are further apart with F, than F;. We claim a
bifurcation: that if W grows more dispersed, then the stopping hazard rate rises for
low search costs ¢, and falls for all higher c¢. To see why, differentiate @) to get
w'(c)=—[1—F+p(1—F(w(c)))] " Then

[l — F(w(c))]

e = —f(w(e))w'(c)

If W5 is more dispersed than Wi, then whenever Fy(wsy(c)) = Fi(wi(c)), we have
fa(wa(c)) < fi(w(c)). This single crossing logic yields the desired double inequality
for the stopping hazard rate [1 — Fy(wq(c))] Z2[1 — Fi(w:(c))] as csé, for some real é.

B. SELECTION EFFECTS. Another major thrust concerns selection effects that

emerge with heterogeneous options, when willingness to search signals a sufficiently



promising wage distribution. For assume a random outside option payoff U with only
one search possible. So the worker searches iff U < w(c), and accepts any job paying
W > U. As search costs rises from ¢; to ca > ¢q, the reservation wage falls from w(c;)
to w(cz). As seen in Figure m, with (W, U) independently and uniformly distributed,
the search chance then falls from A; + R to As + Rs, the chance of accepting a job
falls from A; to As, but this acceptance chance, conditional on search, rises from
Ay /(A1 + Ry) to Ay/(As + Rs). So the selection bias reverses the effect of a higher
search cost — as search cost rises, the worker searches less often and eventually

accepts a job less often. But conditional on search, each search succeeds more often.

3 Model

A searcher must exercise exactly one option from N < oo inside options and one
outside option. The latter has known payoff u € R. The payoff of an inside option is
the sum W = X 4+ Z of a random known factor X and a random hidden factor Z.

The factors X and Z have respective cdf’s G and H (standing for “gnostic” and
“hidden”). Their densities g and h are smooth and log-concave with full support
onRE We assume prospective independence, namely, X and Z are jointly independent
random variables. Ez ante probabilities are computed before X and Z are realized.

The searcher sees or learns the realized known factors x prior to search; one can
interpret it as an attribute that is unobserved by the modeler. He only learns the
realized hidden factor z when he explores the inside option. This incurs a search
cost ¢ > 0, and takes one stage. The searcher participates if he explores any inside
option. After seeing its payoff, he may pass on an option, and explore another option.
If the searcher participates, he may search in any order until any stagen =1,2,..., N,
and then exercise either the outside option or any inside option already explored.
Stopping search entails exercising an option, namely accepting its payoff, thereby
ending the search; this includes not participating. A searcher may exercise the current
option — called striking, in the spirit of finance. Exercising a previously passed inside
option is recalling. Exercising the outside option is called quitting.

In summary, if a searcher stops at stage n = 0,1,2,..., N, then his net payoff is
w — nc if exercises an inside option with payoff w, and u — nc if he quits. One can

capture search with no outside option by assuming an outside option payoff u=—o0.

21t is well-known (since Heckman and Honord (1990)) that log concave distributions are needed to
ensure well-behaved behavior of expectation from truncated distributions. We make this assumption,
keeping in mind that exploring an option entails deciding on the basis of a truncated distribution.
Since g is log-concave, so is 1 — G, by Prekopa’s Theorem, and g/[1 — G] is non-decreasing.



4 Optimal Stopping Characterization

When the known factor has a degenerate distribution, say X = 0, this model captures
finite stage search from a fixed distribution; the searcher employs a constant cutoff,
and only uses the recall option if he reaches the last period. When the hidden factor
is constant, say Z = z, the searcher perfectly sorts options, and stops at the first —
to wit, no recall. But when X and Z have non-degenerate distributions, the searcher
confronts a nontrivial nonstationary search problem, and sometimes recalls an option.
Indeed, rank order all options by realized known factors: 1 > x > --- > xyv. We
argue that the searcher optimally explores options in this order. So if their realized
payoffs are wq, ws, ..., wy, then the dynamic programming state variable is the best
option so far: Qp = u and €2, = max(u, wy, ws, ..., w,) for stagesn =1,2,..., N.
Let F}, denote the distribution of the random payoftf W,, = x, + Z,,, corresponding
to the option with known factor &, = x,. Its cdf is thus F,(w) = H(w — x,). Next,
as in Weitzman| (1979), implicitly define n reservation prizes {wy, ws, ..., wy} for the
options:
Wy, = —¢ + W, F (@) + [ wdF,(w). (3)
Integration by parts yields ¢ = f;: 1 — F.(2)dz. As x, > x,11, the distributions F),
stochastically fall in n, or F,, 1 is FOSD below F),. Then the reservation prizes fall
each stage, namely, w; > wy > -+ > wy. By Weitzman (1979), one explores options
in order of reservation prizes, and thus known factors: One stops at stage-n if the

best-so-far option 2,, exceeds the reservation prize w,,; of exploring the next stage.

Lemma 1 The searcher optimally explores options in order n = 1,2,..., and stops

searching at the first stage n with €, > w,1, accepting the best option so far.

The walue function V,(£2,) at stage n is the maximum payoff assuming optimal
future behavior when the best option so far is €2,. Clearly Vi (Qy)=Qy. For any

n < N, backward induction logic recursively yields value functions V,,_4,...,V} by:

V,,(2,) = max {Qn e Vi () P (20) + [ Vn+1(z)an+1(z)} L@

Subtly, this recursion assumes that the searcher foresees all future known factors.
But since the reservation prize w,; depends only on Fj,.; and not F, .o, Fj,43,... in
(B), the searcher can always optimally stop at stage n apprised only of the next known

factor x,.1. This reflects the one-stage look-ahead property of optimal search B

3We appealed to Weitzman (1979). But a proof by the one-stage look-ahead property works, as
the search problem is monotone, i.e. if a searcher stops at stage n then he also stops at stage n + 1.

7
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Figure 2: Value Function and Recall Chances. At left is the value V,, at stage n
as a function of the best inside option so far w = max(wy, ..., w,). Payoffs w > 1w,
are exercised. Payoffs w in [u,w, ;) are rejected, but may eventually be recalled.
Payoffs w < u are forever rejected. So V,, is flat on (—oo,u), then increasing and
strictly convex on [u, w, 1), then the 45° diagonal. Its slope is the chance of eventually
exercising the current best-so-far payoff w, seen at right for w,5>u>w;14.

Lemma 2 The stage n = 1,..., N wvalue function V, is convex, and differentiable
except at Q@ = wy < -+ < Wyy1, where V! (Q4) > V!(Q—). The slope V! increases
on Wy, Wyy1|, and is the chance of eventually exercising the stage n best option so

far Q,. At stage k =2,..., N, an option w is recalled iff w € [Wyy1, Wy) and O, = w.

Proof by Backward Induction: All claims hold if n=N: Vy(2)=Q for Q>wx_; as the
best option Qy is exercised. Then V};(2)=1. Posit all claims at stage n + 1. Search
stops at stage n if ,, > w,+1. By (@), V() =Q on [w,41,00) and so V!(Q) =1,
i.e., the stopping chance. One searches at stage n + 1 if Q,, <@,+1. Then V/(£,) =
Foi1(Q,)V, 1 (Q) by (@) Since V,,,; jumps up at Wy <-- - <Wp42, so does V. Now,
1 = Vri(wn-s-l"i‘) > Vy{(wnﬂ-l_) - n+l(wn+1)vn/+1(wn+l_) as Vni-f—l(wn—s-l_) <1 by
assumption, and F,.1(w,11) < 1. Then V! exists except at jumps wy < -+ < Wp1.
If Q, < w,1, then the searcher enters stage n + 1 and will recall €2, with chance
V() = Frop1(Q2,) Vo 1 (Qy). As F, 4 has full support and V44 is convex, F, 1V,
rises, and F,11(£2,) < 1. So V, is strictly convex and V!(Q2) <1 for all Q < w,41.
The last claim is true because the searcher enters stage k with best-so-far w iff w =

Q)1 < wg, and then he recalls w iff w = Q > Wi, by Lemma m O

In stationary wage search, the value function is piecewise linear — first constant if

the current wage lies below the reservation wage, and then the 45 degree line. As seen



in Figure @, the value V,, in our model is increasing and strictly convex on an interval
[t, Wy41]. The value increases in this interval since the best-so-far acts as insurance:
The searcher recalls and exercises this option with positive probability. The value is
strictly convex because a higher fallback option is recalled with a higher chance.
Naturally, when search is more costly, there is a higher chance that one exercises
the current best-so-far option immediately or recalls it later. As a result, the value
function in Figure P grows steeper as the search cost ¢ rises (§A in Online Appendix).
In our nonstationary model, recall acts as insurance: The searcher is strictly more
ambitious than is justified by his continuous payoffs — i.e. his reservation prize w,, 1
exceeds the continuation value V,, — since he can recall past options. Without recall,
reservation prizes agree with the continuation values, as in stationary wage search.
Capturing the benefits of the idiosyncratic noise Z, the search optionality value

((c) implicitly solves:

c= /Coo[l — H(z)|d=. (5)

(o)
This is the Bellman equation for the reservation wage in stationary wage search (with

X =0). It falls in the search cost ¢, and rises if Z incurs a mean-preserving spread.
Lemma 3 (Optimal Search) The stage n reservation prize equals w, = x, + ((c).

This expression follows from integrating the tail probability (a) by parts, using (H)E

¢ = /Oou _ By (s)]ds = /mp — H(r — x)]dr = /OO 1 H(s)]dz.

Wn—An

w w

The searcher has three courses of action, depicted in Figure a By Lemmas EI
and B, he strikes if z,, + 2, > w,4; and z, + 2z, > €, _1, passes if W11 > ©, + 2,
and wy,1 > ,_1, and quits or recalls if 2, 1 > x,, + 2, and Q,,_1 > w,,1. Since the
best-so-far €2, increases in n, while the future value w,, falls in n, by Lemma B, we
might end up with €,,_; > w,1, if we do not start there. So early on, the searcher’s
choice is strike or pass, since the future is brighter than the past, or w,; 1 > Q,_1.
But eventually, the choice is either strike or quit / recall, as Qp_1 > Wpy1.

In the spirit of Weitzman (1979), one can solve the n option search problem by

solving a sequence of two option problems. Assume two random inside options A

4The additive expression relies on no discounting. While this assumption can be justified as
natural for consumer search, since this typically lasts for a short period of time, this additive structure
does not arise with a discount factor 5 < 1. For then (B) becomes w, = B[—c + W0, F,(0,) +
Joo wdFy(w)]. So if W, = & + ((¢, 2,), then ¢ solves [z, +¢J(1 = B)/B + ¢ = fcoo 1— H(s)]ds. If
B €(0,1), then ((¢,z,) falls in x,, invalidating the additive expression in Lemma é
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Figure 3: Optimal Stopping Early and Late. We plot behavior as a function
of the known and idiosyncratic factors, x and z. Early on, when w,,; > ,_1, the
searcher always decides between strike and pass (left). But we eventually transition to
Q,_1 > Wyy1, whereupon the decision margin shifts to strike or recall / quit (right).

and B and no outside option. We say that A delays B if wy > wp and ws < wp.
For then the searcher first explores A and finds that its payoff w, is below wg, and
so then explores option B. The delay chance d(x, ¢) is the probability that an option

A with random known factor X delays an option B with a fixed known factor x. So:
0(x,¢) = P{X > 2} n{X + 2 <x+((c)}) =/ H (x+¢(c) =r)g(r)dr.  (6)
X

The attraction 7(x,c) is the probability that option B with fixed known factor x is

explored before option A with random known factor X, i.e., wg>1w, or A delays B:
m(x,c) = P{X <x}U{{X >x}n{X¥+Z<x+(c)}}) =G(x)+dx,c). (7)

These two probabilities are key. For assume only two inside options A and B, for
simplicity. Then the probability that both options are explored — namely, the chance
of the event that A delays B or that B delays A — is the sum of the (expected) delay
chances. Equally well, the expected number of options explored is the sum of the
chances that A and B are explored, namely, the sum of their (expected) attractions.

We next explore how predictions of our model change with its basic parameters.
In §H, we discover a new and general way that risk impacts search duration. In §B, we
characterize how search changes over time. And in §H, we ask whether the stationary

search benchmark model corresponds to the limit with infinitely many options.

10



5 Prize Dispersion and Sequential Search

Now we derive the impact of a more dispersed reward distribution on search duration.

We find that the effect of more dispersed known and idiosyncratic factors is opposite.B
5.1 Dispersion Impacts Search Duration and Participation

We develop a formula for the survival chance o,, namely, the probability that search
lasts for at least n stages. Most easily, 09 = 1 > 0 = on41, while 07 is the participation
chance, i.e., the ex ante probability of initiating the search. Now, consider any o, for
n=1,...,N. This is the chance that (a) n— 1 options delay option n, namely X > x
and X + Z < x+((c), and (b) the other N —n options have a known factor below «,
across all known factors x > u—((c). Events (a) and (b) have probabilities 6(x, ¢)"*
and G(x)V~". Since each option is the nth best overall with the same ex-ante chance,
by prospective independence, integrating the binomial probability of events (a) and
(b) over all possible known factors x and all n options yields the survival chance

formula:

o = N(N ) 1) | s e g ®)

n=1/ Ju-ce
The survival chance o, falls in the search cost ¢ since the cutoff known factor u— ((c)
rises in ¢ by (B), and the delay chance §(x,c) falls in ¢ by @,@ More easily, the
survival chance o, falls in the outside option payoff u as u — ((c) rises in w.
Express the duration — the expected search time until stopping — as 7 =
ZnN:1 0n. The survival chances and so duration fall in the outside option payoff
u and search cost c. By (E) and the attraction formula 7(x, c) = G(x) +9(x, ¢) in (H)

D D1 Ny L B e A

Using this search duration formula, we now explore the ambivalent impact of a
riskier prize distribution: For the searcher grows more ambitious, but there is more

weight in each taill To analyze risk here, assume first standard stationary search with

®Ganuza and Penalva (2010) use the dispersive order to study information disclosure in auctions.
Zhou (2016) and Choi et_all (2016) use it to_study pricing in discrete choice models. In their
paper on notions of risk, Chateauneuf et al| (2004) include an example of stationary search with
no discounting, in which duration rises if the reward distribution grows location independent riskier
(Jewity ([1989)).

6A left or right tail of the cdf has weight below 0.5. Eg. Let P(Z,=1)=P(2,=2)=P(2; =
3) =1/3. Let ¢ = 1/4. So (1(c) = 3 by (H) The stopping hazard rate is P(Z; > 3) = 1/3. Let
the hidden factor have a MPS so that P(Z; = 1) = P(Z; = 3) = 1/2. Now, (2(c) = 3 by (H), and
P(Z5 > 3) = 1/2. The stopping hazard rate rises as Z grows riskier. But if ¢ = 1/2, then ¢(;(c) =2
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no outside option, so that X = 0,n = oo, and u = —oco. A mean-preserving spread of
Z raises the search optionality value ((c), by (B), but raises the weight in the right tail.
To resolve the net effect on the stopping hazard rate S = 1— H({(c)), change variables
in the standard search Bellman equation (B) from the prize z to its quantile a, via
the quantile function z = H~'(a). Since dz=dH ' (a)=[0H'(a)/dalda, we have:

1 —Qa —aHil(a) a = - — z zZ =2C
/15(1 )2 —/C(C)[l H(s)dz = c.

Given cdf’s H; and H,, the associated stopping hazard rates are ranked Sy < & if the
quantile function Hy ' is globally steeper than H; ', i.e., 0H, '(a)/0a > OH; "(a)/da
at all quantile levels a € (0,1). A sufficient condition for this inequality is that
ho(Hy ' (a)) < hi(H; '(a)) for all a € (0,1), where h, = H! is the density of Z,, for
n = 1,2 — namely, that 2, is more dispersed than Z; (written Zy = gisp 21).

The dispersive order suffices to rank stopping hazard rates in the stationary world
in §E But in our nonstationary model, a stronger ranking is needed. The random
variable 25 is a mean-enhancing dispersion of 2y if 25 =45, 21 and E[Z5] > E[Z].
It is a mean-preserving dispersion if E[Z,] = E[Z;]. This is stronger than saying that
H, is a mean preserving spread of H;. For since H, ! is steeper than H 1 ! while H,

and Hj have the same mean, H; single crosses Hy (see Diamond and Stiglit7 (1974)).

Theorem 1 (Hidden Factors) A mean enhancing dispersion in Z raises survival

chances o, forn = 1,2, ..., and so also the participation chance and search duration.

Next, consider the known factor X. By Lemma E, a searcher participates for a
sufficiently inviting best option: &X; > u — ((¢). Naturally, if the random variable X
stochastically rises (falls), then so does the best known factor &}, and the participa-
tion chance oy rises (falls). Next, assume instead that X grows more dispersed but
neither rises or falls stochastically. Its impact on o; depends on the outside option.
Intuitively, if w is large, then u — ((c) exceeds the median of X;. As X grows more
dispersed, all quantiles of X7 push apart, inflating quantiles above the median, and so
raising the chance oy that X3 > u — ((c). But if u is small, then u — ((c) is below the
median of X, and the effect of dispersion reverses: It shrinks the bottom quantiles

of X, raising the chance of X} < wu — ((c), depressing ;. Part (a) summarizes this:

Theorem 2 (Known Factors) (a) If X grows more dispersed, but neither rises nor

falls stochastically, then the participation chance o1 falls for low outside options u,

and P(Z; > 2) = 2/3, while (2(c) = 3 and P(Z, > 3) = 1/2. The stopping hazard rate drops.
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and rises for all higher outside options. (b) If X grows more dispersed and falls

stochastically, then every survival chance o, falls, as does the search duration.

To understand part (b), note that dispersion in the known factor X has a different
impact on the survival chance 0,,, and so search duration, than the participation rate.
For the searcher stops sooner if its order statistics (X)) drop more rapidly. Since all
gaps between order statistics &, — X, increase when X grows more disperse, this
depresses the survival chances o, ceteris paribus. But inasmuch as dispersion raises
participation (Theorem E(a)), this by itself increases the survival chances. Part (b)
resolves the ambivalence, by assuming that X stochastically falls; this eliminates the

participation effect, and so the survival chance unambiguously falls with X" dispersion.

5.2 Dispersion Impacts Quitting Chances
The quitting chance is the probability ¢ that a searcher either does not participate, or

does, but eventually exercises his outside option. Conversely, he eventually elects an
inside option with chance 1 — ¢. For instance, in online product search, after using a
shopping search engine, a searcher eventually buys with chance 1 —¢. In a stationary
job search environment, if one is willing to search, then one never quits, and so ¢ = 0.
The searcher explores option j only if he does not quit before, and so if X;+((c) =
w; > u, by Lemma H So one explores option j only if X; > u — ((c), which is thus a
cutoff known factor. Option j is dominated (by the outside option) if X; < u — ((c).
In a world with just one inside option, the disappointment chance is the probability
that it is explored before the outside option is exercised. By Lemma E, this probability
equals the delay chance 6(u — ((c),c), namely, for a hyothetical inside option with
known factor payoff u — ((c¢). The quitting chance in a one-stage problem is the
disappointment chance plus the nonparticipation chance, i.e., 7(u — ((c),c) by (B)
Let g, be the stage n quitting chance, namely: (1) the first n options are explored
and never exercised: X; > u—((c) and X; + Z; < u,Vj <, and (2) later options are
dominated: X; < u — ((c),Vj > i. Since an option is explored and never exercised

with chance d(u — ((c), ¢), by prospective independence, the n events have chance:

- (N)aw ()0 Gl — ()N (10)

n

Given the quitting chance ¢ = 3¢, equations (B) and () yield a simple formula
¢ =33 0qn = [0(u = () + Gu —((c)]" = m(u—¢(c), 0)". (11)
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The quitting chance ¢ therefore geometrically falls in the number of options n.

Theorem 3 (Hidden Factors) The quitting chance q rises if Z incurs a mean pre-

serving dispersion, for low outside options u, and falls for all higher outside options u.

This corresponds to the effect of dispersion on the non-participation chance 1 — oy
(Theorem E(a)) A single option problem affords some quick intuition. For then,
since the searcher quits if he does not participate (X + ((¢) < u) or if he recalls the
outside option (X + Z < u), one can rewrite the quitting chance in () with one
option as a cdf of the random variable min(X + ((¢), X + Z) = X + min(Z, {(c)),
namely:

qg=qo+ q =m(u—C(c),c) = P(X +min(Z,((c)) < u). (12)

Easily, the quitting chance falls in the outside option u and in the search cost ¢ since
('(c) < 0. A mean preserving dispersion of the hidden factor Z inflates the search
optionality value ((c). This stochastically raises X +min(Z, ((c)), and so shrinks ()
Moreover, the top quantiles of Z rise and the bottom quantiles fall. This is equally
true of X + min(Z,((c)). Hence, as Z grows more dispersed, the quitting chance ¢
in (@) rises if w is small, and falls for all large enough u. The result asserts more
strongly that this comparative static is single crossing in w.

As the known factor X grows more disperse, X + min(Z, ((c)) might not, and its

effect on ¢ is unclear. Easily, the quitting chance ¢ falls as X or Z stochastically rises.

6 Selection Effects and Hazard Rates Over Time

We now see how selection effects arise with ranked known factors, and explore their
counterintuitive consequences. Let S, Q,, and &, be the respective hazard rates of
stopping, quitting, and ezercising an inside option, as computed ex ante, conditional
on entering stage n. Since the searcher either quits or exercises an inside option after
stopping, S, = 9, +&,. Next, if K,, and R,, are the respective hazard rates of striking
the current option or recalling an explored option at stage-n, then &, = K, + R,,.
Our selection effects arise because search choices signal information about known
factors: For one is more willing to explore option n when search costs rise with a

higher known factor &,,, and so higher later factors X, 1, etc.

Lemma 4 Conditional on entering stage n, the factor X, stochastically rises in the

number N of options, the search cost ¢, and the outside option u, and falls in n.
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We next explore how this selection effect impacts search hazard rates. Not only does
the current known factor &), increase in the cost ¢, but it rises more than X, 1,
since X has a log-concave distribution. So the gap between known factors &,, — X, 11
widens, and the survival probability o,, falls (as noted before §@) More strongly,
we prove in §@ that o, falls proportionately less than o, raising the stopping
hazard rate S, = 1 — 0,,41/0,. So one stops sooner with a higher search cost ¢, but
this is more subtle with selection effects.!

Naturally, future options stochastically worsen each stage, since the known factors
fall, while past inside fallback options grow more numerous. But opposing this is a
selection effect: Conditional on arriving at a later stage, the fallback inside options
are worse, and the outside option is more inviting. We show that the first effect

dominates the second selection effect for R,, and &,, by log-concavity of G and H.

Theorem 4 (Search Intensifies) The recall and inside option exercise hazard rates,

R, and &,, rise in n. The quitting hazard rate Q,, rises for small search costs ¢ > 0.

For example, assume X and Z are Gaussian random variables with distribution
N(0,a?) and N(0,1 — a?) respectively. If (a,c,u,n) = (0.4,0.01,1,7), then I, is
U-shaped in n. If (a,c,u,n) = (0.4,0.171° 4,5) then Q, drops from stage 1 to stage
2 and then rises in n.

If (o, c,u,n) = (0.4,1.2,—0.1,7), the hazard rate of quitting falls in n when ¢ or
u are very large.

So the probability of exercising any option, or any prior option, rises over time.
While the recall probability rises, we now ask which option one recalls. While earlier
options have larger known factors, they have been passed over more often; this offers

more damning selection evidence of their hidden factors. Nevertheless:

Theorem 5 (Older Options are Recalled More) If one explores option n, then
the chance of recalling any prior option j <n falls in j, for alln=1,2,... N.

Proof: Since the searcher explores option n, the payoff of any prior option is less
than the cutoff w, = x, + ((c), or it would have been exercised earlier. By the

Markov property of order statistics,E the joint distribution of the known and hidden

"Selection effects also surprisingly affect the eventual quitting chance ¢ = (q — qo)/(1 — qo),
conditional on search. Intuitively, the quitting chance ¢ rises in ¢ (mentioned after ()é) ._But
conditional on search, g falls in the search cost ¢ with a small number of options N (Claim @)
8Theorem 2.4.1 (The Markov Property) in Arnold et al| (1992): Let Xi., > Xo.,, > -+ > X,,.,, be
order statistics of a random sample X1, Xo,..., X,, from a population with cdf F' and pdf f. Then
given Xj., = x;, the distribution of Xj.,,, for j < 4, is the same as the distribution of the j-th order
statistic of an (n — ) sample from a population with distribution F' truncated at the left by ;.
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factors for the first n — 1 options equals that of n —1 i.i.d. draws (X, Z) from (G, H),
conditional on the known ranking X > z, and the selection effect X + Z < #, + ((¢).

If X = x > x, is the realized known factor of any prior option, its payofft W = x + Z

has cdf
H(w — x)

H(% +¢(c) — x)
Since w < x, + ((c), this falls in x by log-concavity of H, and W stochastically

PW <wlW < %, +((c)) =

increases in x. Hence, the payoffs of earlier options are stochastically ranked. Because

this ordering holds for all X, realizations, it is also holds unconditional on X,. 0

7 Is Stationary Search a Good Benchmark?

We next explore how well the infinite horizon model approximates the actual long
finite horizons that exist. In a stationary search model, one never quits or recalls
— hazard rates are constant at @ = R = 0 — while striking occurs at a constant
hazard rate I = 1 — H({(c)). With a finite number N of options, the quitting hazard
rate @, falls in N. For upon entering stage n, the known factor X, rises in N, by
Lemma @ Given correlated order statistics, both fallback and future options are more
attractive too, deterring quitting. But the decision to quit also reflects the expected
improvement in future options. Intuitively, the gaps &, — A}, 1 between consecutive
known factors stochastically shrink as N increases. This spurs search, depressing
hazard rates K,, R, and Q,, as N grows.

Next, consider the limiting behavior as N explodes. One might guess that the
predictions resemble those of a stationary search model since the gaps between known
factors A, vanish — i.e. the known factors are nearly constant. This intuitive guess
is wrong: For the limit gaps &), — &},11 depend on the right tail of the distribution G.

Since the hazard rate g/[1 — G| is non-decreasing, lim,+q-11yg(x)/[1 — G(x)]
exists and is positive. If lim,g-11) g(x)/[1 — G(x)] = oo, G has a thin taill — e.g.
the uniform and Gaussian distributions have a thin tail and the exponential does not.

This definition affords us a sharp characterization of limit search behavior:

Theorem 6 (Hazard Rates and Number of Options) The hazard rates Q,, R,
and IC,, of quitting, recalling, and striking in any stage n all fall in N. As N — oo, for

9Absent the thin tail of G, the right tail vanishes exponentially fast as x explodes (Claim @)
Also, the first order statistic of n i.i.d. draws from G is approximately Gumbel distributed for large n.
This is a well-known result in the extreme value theory: G is in the domain of attraction of a Gumbel
type general extreme value distribution. See Leadbetter et al) (2012) for a comprehensive discussion.
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each stage n, Q,, vanishes, R, vanishes if and only if G has a thin tail, and IC,, tends
to 1—H(¢(c))€(0,1) if G has a thin tail, and otherwise has a strictly larger limit.

Naturally, as the number of options N explodes, the searcher never quits and
strikes at a fixed rate. But the limit recall hazard rate is positive if and only if the
distribution G of known factors does not have a thin tail. In fact, to deny the recall
option to the searcher strictly lowers his welfare in the limit N 1 oo ld Moreoever,
striking hazard rates should intuitively just reflect the hidden noise in the limit. But
absent a thin tail, one strikes in the limit more often than justified by hidden noise —
since the gaps between consecutive known factors do not vanish, and this provides an
additional incentive to strike. All told, without thin tails, the infinite horizon model
surprisingly offers a misleading approximation of large finite horizon search behavior.

Theorem B also implies that search duration rises with more options. For the

striking hazard rate S, = 1 — 0,11/0, yields the survival chance formula o, =
oy1T_; (1 = §;). This rises in N, as oy = P(X; > u — ((c)) rises in N by Lemma @,

and §;=9Q;+¢; falls in N, by Theorem B So search duration TEZ?LO o, rises in N.

8 Application: Web Search

We now specialize our environment of known and idiosyncratic factors, to create a
simple dynamic model web search. For we imagine that the search engine extracts

known factors from web site payoffs, and uses them to pre-rank options for the user.

8.1 An Accuracy Model

A user can consume at most one web site from n options. Each entails a clicking cost
c¢>0. Not all is lost if the user does not find the good: The outside option is u > —o0.

A search engine helps the user by sorting web sites according to his preference.
After the user enters the search query, the search engine estimates his web site payoffs.
The search engine then sorts the web sites in descending order of their expected
payoffs, and posts a list of hyperlinks and short descriptions (revealing known factors).
Seeing this list, the user clicks them sequentially. By Lemma m, he need only learn the
next known factor after each click. So the search engine orders the options exactly as

the searcher would rank order them, thinking of these estimates as known factors.

10Before learning the known factor X,,, given G, H continuous, the searcher thinks the reservation
prize wy,41 in Lemma B almost surely (a.s.) differs from the best-so-far €,,, and so the searcher is
a.s. not indifferent about stopping, by Lemma [ll, and a.s. strictly prefers one option to all others.
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Whereas so far we’ve assumed that the searcher rank-orders the options himself,
here the search engine does it. We normalize the means of X and Z to zero, by
adjusting the outside option. Greater accuracy means a lower hidden variance E[X?]
and a greater known variance E[Z?|, while leaving unchanged the distribution X + Z.

Write X = X, and Z = 7, where X and Z each have unit variance, and are
independent by prospective independence. But since W = X + Z = aX + 57 has a

fixed distribution, its variance o + 32 is constant. Normalizing o + 5% = 1, we have

£ =+1—a?. Hence:
W=aX+V1-a2Z (13)

Accuracy o transfers weight from the hidden to the known factor, for given X, Z.
In fact, the distributions of W, X and Z coincide, since W = Z when a = 0 and
W = X when o = 1. Since equation () holds for all a € [0, 1], their distribution
is stable.EI But the log-concavity of X, Z implies a finite variance. Finally, W, X
and Z are each Gaussian N(0, 1), as that is the only stable distribution with a finite
Vauriance.E As this setting is a special case of our original model, all earlier results
in §Q»§B apply. Because scaling a distribution increases its dispersion,E the dispersion
of the known factor rises and of the hidden factor falls as the accuracy « rises.

Aside from web search, our Gaussian accuracy model admits an interpretation
in which greater accuracy arises from more precise Bayesian signals. Assume that
the payoffs of inside options are Gaussian W ~ N(0,1). Before searching, he ob-
serves a signal X ~ N(aw, \/1—7042) for each option with true value w — say, a
job advertisement. Upon seeing X = x, the searcher updates his posterior beliefs to
W ~ N(az, M)Q Since the noise in his estimate Z = (W — ax)/v1 — a2 is
also N(0,1), and is independent of X, the formula (@) arises with X, Z ~ N(0,1).

Optimal stopping is governed by our model, where the optionality ((«,c) solves

c= /C:) {1 — P <%&2)} ds. (14)

where ® is the Gaussian cdf. One participates in search iff X; > ¢(a, u, ¢), where

a specialization of (B)

UBy Definition 1.1 in Nolan (2009), a random variable X is stable if, for any independent copies
X1 and X5, and a,b > 0, we have a X +bX5 equal ¢X + d in distribution, for some ¢ > 0 and d € R.

2Every stable distribution has an index of stability o € (0,2]. Nolan (2009) states that for a
random variable X with a stable distribution, E[|X|?] < oo if and only if @ = 2 (p. 15). When
a = 2, the set of stable distributions is equivalent to the Gaussian family.

13For any continuous random variable X and Y, X =4, Y iff X =4 (Y for some increasing 1
which satisfies ¥ (y') — ¥(y) > ¢y’ — y whenever y > y by equation (3.B.13) in SS.

14Gince X/ has mean w and precision o /(1—a?), the posterior precision of W is 1+a2/(1—a?) =
1/(1 — a?) and its posterior mean is therefore [(z/a)a?/(1 — a?)]/[1 + a2/(1 — a?)] = ax.
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U, u,c) = %(a,c). (15)

Lemma 5 (Optionality) The search optionality value ((c,c) falls in accuracy «,
when ((0,¢) > —c = ((1,¢). Also, ((a,c)/vV1— a? monotonically falls in o to —oc.

The extreme cases are easy: The limit when accuracy vanishes o = 0 is stationary
search. Here, one searches if the best so far is less than the reservation value, i.e.,
¢(0,¢). With perfect accuracy a = 1, noise and thus search optionality vanish. The
model’s richness arises from realistic intermediate accuracy levels a € (0,1).

A common ranking tool of search engines is the click through rate (CTR) — the
chance the user clicks on (“explores”) any web site after posting a query. This is our
participation chance o;. By Theorems El and B, for low outside option payoffs u, the
CTR increases with a mean-preserving dispersion in the hidden factor and falls with
a mean-preserving dispersion in the known factor. A similar tradeoff emerges for the
search duration 7. In our web search model, the known factor grows more dispersed
and the hidden factor less so as accuracy rises. So the effect of greater accuracy on

the CTR or search duration is unclear. Our first web search result resolves this doubt.

Proposition 1 (Changing Accuracy) The quitting chance q rises in accuracy «
for low outside option payoffs u < ((«,c), and otherwise falls in «. The CTR and the

search duration T rise in accuracy o when u is high enough, and fall for all lower u.

For intuition, assume no outside option, so that the searcher never quits. As
accuracy rises, the optionality value ((a, ¢) of exploring inside options falls, and one
stops sooner. But with a good outside option, the chance that aX; > u—((a, ¢) rises
in accuracy: the searcher clicks through more, and the expected search time rises.

Since search engines constantly update their search algorithms, it is important
to know whether a new algorithm enhances the user’s payoff. By Proposition m, the
CTR, the expected search time, and the quitting chance are each non-monotone in
search engine accuracy (Figure @) As a result, using these statistics to measure
search engine accuracy is unjustified. Since we show below that the searcher’s welfare
is increasing in accuracy, these statistics are also invalid welfare measures.

Proposition m crucially identifies a novel potential conflict of interest between online
shopping sites and consumers. Suppose that the goal of a shopping search engine is to
maximize the sale chance 1 — ¢. This may be inconsistent with maximizing accuracy.

For by Proposition El, as accuracy rises, the quitting chance ¢ rises, and therefore the
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Figure 4: Both panels depict Proposition El At left, the slope of the quitting chance
in « vanishes for the search optionality ((a, ¢) = u. At right, the expected search time
falls/rises in @ below/above the curve. The simulated graphs assume ¢ = 0.3,n = 6.
sales chance falls, provided u < ((1,¢) (Figure @) Consequently,@ when the price of
the good is high (relative to the outside option), a shopping web site perversely earns
higher profits from a less accurate search engine. Conversely, maximizing accuracy is

sales-maximizing for low priced goods, since ¢ falls in « for outside options u > ((0, ¢).

8.2 The Value of a Search Engine

Let V(a, ¢, u) be the (net) pre-query value, namely, the prospectively expected payoff
of the user whose search engine has accuracy «. This is the expectation of the initial
value Vy(u) in recursion (@), over possible known factors Xy, Xy, ..., Xn.

Let aX* and v/1 — a2Z* be the random known and hidden factors for the con-

sumed web site, assuming he exercises one. Then
V(a,c,u) =qu+ (1 —q)ElaX™ + V1 —a?Z*] — Te.

By standard Envelope Theorem logic, two value derivatives areE

V(a,c,u) NV (a,c,u)
e T

As noted after (@), the quitting chance ¢ increases in the outside option. So V,(«, ¢, u)

=q. (16)

increases in u, and V is strictly convex in u. Also, V is strictly convex in c.

Inspired by our Bayesian informational story in §@, we define the value of the
search engine analogous to the value of information — namely, the gain over purely
random search, i.e., II(a,c,u) = V(a,c,u) — V(0,¢,u). By Blackwell’s Theorem,@

15For our applications here and in §@, the outside option w is fixed, say proxied by the value of
time. Then high and low priced goods correspond to high and low prices relative to u.

6By Lemma E, Vo(u) is differentiable in u except at the cutoffs w,, = x, + {(¢). Since the
distribution of known factors X, is continuous, the pre-query value V = E[Vy(u)] is differentiable
in u. By a similar argument, V is differentiable in ¢ (see §A in Online Appendix for details).

70Qur dynamic strategy can be formulated at time zero as a set of contingent thresholds.
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Figure 5: We plot, for accuracies a € {0.3,0.5,0.7}, how the (numerically-computed)
search engine value is single-peaked in outside option u (left) or clicking cost ¢ (right).
The value is strictly positive as u — —oo and vanishes as © — 00, or as ¢ — Fo0.

the value of the search engine is monotone in a.@ But intuitively, the user should

strictly profit from a better search engine, or II(«, ¢, u) should strictly rise in o. Also:

Proposition 2 (Changes in the Value) Il(a, ¢, u) is single-peaked in ¢ > 0 and u.

It vanishes as ¢ — 0, ¢ — 00, or u — 00, and is boundedly positive as u — —o0.

By Proposition m, the search engine offers a positive gain to a web searcher with
no outside option. Also, the value of a search engine is intuitively single-peaked in
the c. For if ¢ = 0, a user always clicks on all web sites and a search engine is useless.
But if ¢ = 00, no web site is clicked, and a search engine is once again useless.

With no outside option (u = —00), a search engine reduces clicks and so helps. As
u increases, the search engine helps on intensive and extensive margins — it not only
reduces the number of clicks, but also helps the user decide whether to click-through
or not; therefore, the value of search engine initially is increasing in u. But for very
large u, the user will not click on any web site, and the search engine is useless.

Search engine accuracy and usability —c have much improved since 2000, and the

number of web sites has exploded. Both trends are explained by two cross partials:

Proposition 3 (Search Engine Synergies) Accuracy o and usability —c are both
complements to the number of web sites, namely 0*V /Onda > 0 and *V /Ondc < 0.

These synergies have a feedback effect, for more accurate and useable search engine

technology has surely encouraged the creation of more web sites.

18Given o, one can create ay, < ag, by adding zero mean Gaussian noise with variance a% — a%

to the known factors, raising the hidden factor variance to (1 — a%) + (a% —a2)=1—a3.
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8.3 Is Web Search Really Sequential?

Our model exhibits a known property of search and learning models, that encouraging
search outcomes need not reduce search duration. Rosenfield and Shapirg (1981))
showed that one need not even employ a cut-off strategy — for expectations rise after
high draws. When W is larger, so too are AXy,..., &), and expected search duration
rises. Our log-concavity assumptions help ensure the optimality of our threshold rule.

So inspired, we econometrically test our model. Intuitively, better earlier outcomes
shorten the sequential search process. But this need not be so. Assume that search
lasts T' > 1 stages, and the first web site has payoff W; = X} + Z;. Consider the OLS
regression 1" = [y + f1 W1 + € on data generated from our model. We claim that —
fixing the CTR 01 = 1 — G(u — ((c))™ — the true coefficient obeys §; > 0, provided
the outside option u is large enough and search cost ¢ small enough. By Lemmas El
and a, the searcher clicks at stage i if X; 4+ ((c) > €; = max(u, wy, ws, ..., w;). In the
limit u — oo and ¢ — 0, and so ((¢) — oo, the stage ¢ search decision depends only
on the known factor, clicking if X; > u—((c) = £. As W) = X+ Z, is correlated with
AXs, one clicks the second web site more often with higher W (see §@) —i.e. B > 0.

In fact, search duration is not monotone in the first search outcome even ignoring
its known factor. For consider the OLS regression T' = 3y + f22; + €. The absolute
true coefficient |f3;| vanishes as u — oo and ¢ — 0, fixing the CTR (see §@) This
follows once more because the clicking decision depends on X; but not Z; for large u,
very small ¢, but with v — ((c) fixed. So T and Z; are uncorrelated.

Recently, De Los Santos et al| (2012) (DHW) studies an online book market and
test three sine qua non predictions of sequential search models. In their most relevant
“test 3”7, DHW consider an OLS regression T' = [+ (3P, +¢€ of the number of searches
T on the price discount P; at the first store. They assume that price discounts are
learned after visiting the store,E and suggest that Weitzman’s model requires 83 < 0.
For a higher first price discount intuitively leads the searcher to stop more often.
Finding that (5 is not statistically different from 0, DHW reject Weitzman’s model.

But this logic misses selection effects. For a price learned after a store visit is best
modeled as a hidden factor: Z; = P;. As our second regression shows, Weitzman’s
model yields a statistically insignificant coefficient 3 on the hidden factor for a large

outside option u and search cost ¢ small relative to rewards — a plausible limit in

YDHW posit that consumer i’s payoff from buying at store j is u;; = ;; + a;pj. Consumer i
knows his gross utility d;; before searching store j, and learns the price discount p; after visiting
store j. In our model, d;; is the known factor and the price discount p; is the hidden factor.
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their context.2d But if the searcher learns about the price discount P; before searching,
then P, = X} + Z1, where the searcher sees the known factor A;. In this case, our
first regression shows that even 3 > 0 is consistent with Weitzman’s model when
is large and c is small. So really any sign of (3 is consistent with Weitzman’s model.

While DHW use data for cases when users purchase from a web site after searching,
our regressions condition on participation. In §@, we study the regression T =
Bo + B3P + € given a final purchase. Venturing the extreme case when P, = &, we
show that if the hidden factor density has a thin tail, then 83 > 0 as u — oo and

¢ — 0, contrary to the DHW conjecture: Higher price discounts do not shorten search.

A Prize Dispersion Proofs

A.1 Hidden Dispersion and Duration: Proof of Theorem

Index the distribution so that Z; experiences a mean-enhancing dispersion as ¢ rises.

Let H; and (;(c) be the corresponding distribution function and search optionality.
Claim A.1 For any A > 0, Hi((:(c) — A) rises in the dispersion index t.

PRrROOF: Change variables in (B) to z = H; '(a) + A. Then

c= /1 (1 — H,(H; " (a) + A))aHt—l(a)da.
Hi(G()-A) da

since dz = [0H, ' (a)/da]da. Now, dispersion means that dH, *(a)/Oa rises in t, i.e.
the quantile function steepens. Also, 1 — H,(H, '(a) + A) rises in t. To see why, put
si(a, A) = H,(H; *(a) + A)), so that H, '(s,(a,A)) — H;*(a) = A. Since H; '(s) —
H;'(a) rises in t if s > a, equality H, '(s,(a,A))—H; ' (a) = A demands that s;(a, A)
fall in ¢. Since the integrand rises in ¢, the lower bound H,((;(c) — A) rises too. [

Let t increase, changing H;. By (H), the survival chance o, rises in §;(x,c) and
falls in u — ¢;(c). Recalling (E), 0(x.¢) = [ Hy(G(c) — s)g(ax + s)ds rises in t, since
Hi(¢(c) — s) rises, by Claim @ Thus, o, increases if u — (;(c) falls in ¢. Since a

mean-enhancing dispersion in Z; is a combination of a mean-preserving dispersion of

20For in DHW'’s data, about 5% of visits to online bookstores result in a transaction (15561
transactions from 327074 searches). Since DHW suggest less than 2 visits per search, the success
chance is less than 10%; equivalently, the quitting chance is high, exceeding 90%. This in turn
implies that consumers’ outside option payoffs © must be high relative to the size of the rewards, by
(@)) That consumers search despite such a low success chance implies a small search cost ¢ > 0.
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Z; and a translation of Z; — namely, adding a positive constant to Z; — it suffices
that (;(c) rises in both cases. First, since (;(¢) rises in any MPS of Z; by (E), Gi(c)
rises as Z; experiences a mean-preserving dispersion. Second, (;(c) rises when Z;

experiences a translation by (H) Then (;(c) rises in t, and thus u — (;(c) falls. O

A.2 Search Duration and Participation: Proof of Theorem

We next prove Theorem E(a) — for if the hidden factor remains unchanged, then so
does ((c), and thus X + ((c) stochastically rises/falls iff X' stochastically rises/falls.

Claim A.2 Let X and Z change. If X + ((c) stochastically rises (falls), then the
participation chance oy rises (falls). If X + ((c) neither stochastically rises nor falls,

but X grows more disperse, oy falls for low outside options u, and rises for high w.

PRrROOF: If X5 + (2(c) =rsp X1 + (i(c), then Ga(u — ((c)) < Gi(u — (i(c)) for all w.
The chance oy = 1—G(u—((c))N by (E) rises, and falls if X' +((c) falls stochastically.

Next, G1(u — (i(c)) — Ga(u — (2(c)) is single-crossing in u if Xy >4, X7. For by
(3.B.3) in SS, Xy =4y A1 iff Gi(u) — Ga(u — k) is single crossing in u for all k. If
X1+ Gi(c) and Xy + (o(c) are not stochastically ranked, then their cdfs intersect, by
continuity — so that P(X; + (1(c¢) < u) = P(Xy + ((c) < u), for some u. Thus,
G1(u — (1(c)) — Go(u — (2(c)) is negative for u < u and positive for u > 4. O

To prove Theorem E (), let A, = (A1, Ag, Ag, ..., A, 1), where gaps are A, =
X — X1 > 0. As X — X, = EZ;}(X;C — Xpy1) = EZ;;Ak, the survival chance is

on =P ({X, +C(0) > u} Njen {¢(0) — Sp2i AR > Z5})

If ¢ is the joint distribution of A, and X, we may rewrite this as:

n—1

o= [ Mecom [[HCO - SR w). (D)
nE€ER,Ap R j=1
Let G, be the cdf of &,,, where Xy >4, &1. Since the gap between adjacent order
statistics of G5 exceeds that of GG; for the dispersive order, the gaps between consec-
utive known factors A, jointly decrease stochastically as X' grows less dispersive.
With no outside option (u = —00), the indicator I in (@) is one. As X grows less
dispersive, A, = {X) — Xy, X, — X1, -, A1 — A} falls stochastically, and
so o, rises. Next suppose u > —oo. If X stochastically rises, then so does the order

statistic X, in (@), forn=1,...,N. Since I{x,>y—c(e)} rises in &, so does o,,. [
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A.3 Ex-ante Quitting Chance: Proof of Theorem @

Recalling (), let q, = m,(u — ((c), )™ be the attraction for the hidden factor Z,,
for n = 1,2. If Z, is a mean preserving dispersion of Z, it suffices that ¢; < ¢ as Z
iff u is low enough. We claim mo(u — (2(c), ¢) z m(u — (1(c), ) as u < @ for some .

Let H, be the cdf of Z,,. Integrating (H) by parts, (,(c) = —c—i—E[Z]—i—ff;(f) H,(z)dz.
As dispersion implies a MPS, the integral ffoo H(z)dz rises, and so (3(c) > Cl(c).@

Let H, be the cdf of min{Z,,(,(c)}. Then H,(z) — H,(z) = Hs(z) — Hy(z)
obeys the reverse single crossing property if z < (;(c), since H, ! is steeper than H; '
Likewise, Hy(z) — H,(z) = Hy(z)—1 < 0 for z € [(1(c), (2(c)), and Hy(z)—H (2) =0
for z > (3(c). Altogether, H, — H, has at most one sign change from + to —.

Because m(u — ((c),c) = P(min(Z,{(c)) < u — X) from ()

m(u—C(c),c) = ffooo P({min(Z,¢(c)) < s}nN{s=u—X})ds = ffooo H,(s)g(u—s)ds.

Now, ma(u — (a(c), ¢) — mi(u— Gi(c),¢) = [T [Hy(s) — Hy(s)]g(u — s)ds changes sign

—0o0

at most one sign from + to — as u rises because this is true of H,(s) — H,(s), and
the density ¢ is log-concave, by Karlin and Rubin (1955).

Next, it is impossible that m(u — (i(c),¢) > m(u — (a(c),c) for all u. For if
so, since m,(u — (,(c),c) is the cdf of X + min{Z,,(,(c)}, it follows that X +
min{ 2, (a(c)} strictly FSD dominates X + min{Z;,(1(c)}. This is impossible, as
E[X + min{ 2, {s(c)}]=E[X + min{ 21, (1(c)}], given E[Z5]=FE[Z,], and

Blmin{Z,, Gu()}) = BIZ,] = [0 (Gale) = 2)HL (=) = [ [L = Hal2)}dz = c.

by (B) Hence mo(u — (2(c), ¢) — m(u — (1(c), ¢) changes sign + to - once as u rises.

B Selection Bias Proofs

B.1 Stochastic Shifts of the Known Factor: Proof of Lemma @

We analyze the delay chance d(x, ¢) in Claim El] and then use it to prove Lemma @

Claim B.1 0(x,c) falls in ¢ and is log-supermodular; also, §(x,c)/G(x) falls in x.

2'When Z has full support, integration by parts requires lim, , ., zH(z) < oo. By I’'Hopital’s
rule, lim, , ., zH(z) = lim,,_, —2z%h(z). This limit must vanish, for otherwise the second moment
[5. z%h(z)dz is infinite — impossible, as log-concave densities have finite moments (An, 1997).
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PROOF: Set s =a — x in (B) so that 0(x,c) = [ H (C(c) — s) g(s + x)ds. Then
¢'(c) < 0 implies 0.(x,c) < 0. Since H(((c) — s) and g(s + x) are log-supermodular
in ({(c),s) and (s, —x), resp., and partial integration preserves log-supermodularity
(Karlin and Rinott], [1980), d(x, ¢) is log-supermodular in ({(c), —x), and so in (c, x).

Next,
50, ) = —H (¢(e)) G () + [ 1 (C(e) — 8) Gls + x)ds. (18)

Since G(x) is log-concave, G(s+x)/G(x) falls in x, and thus so does 0(x, ¢)/G(x). O

PrROOF OF LEMMA @: To infer the conditional distribution of X, after the searcher

enters stage n, let

n(x,n.c) = 6(x,¢)" ' G(x)" "g(x) (19)

so that N(]Zjll)n(ac, n,c) is the density of &, by (B) Using (B) and (),

N [ con(xm,ode [ n(x,n, o)dx
P(X, < alenters stage n) = (o) fu_C(c) = fuo;qc) . (20)
On fu—((c) 77(7(_7 n, C)dx

This falls in (V, ¢, u, —n) if its numerator is log-supermodular in (a, NV, ¢, u). By (),

9 el [ o ade] — 8@ 0"IG(a) "g(a)
7 gUW)”(’C’ ’ ”’C] I e 35 "GN g (x)dx

(21)

The RHS of (@) rises in N, since G(a)/G(x) > 1, for any x < a. Hence, the brack-
eted integral in (@) is log-supermodular in (N, a), and thus (@) falls in N. Since the
disappointment chance (%, ¢) is log-supermodular by Claim @, d(a,c)/d(x,c) rises
in ¢, if x < a. Since u—((c) rises in ¢, the RHS of (@) rises in ¢. So f:—C(c) n(x, n,c)dx
is log-supermodular in (¢, a). Then the conditional probability (R0) falls in ¢. Simi-
larly, the RHS of (@) rises in u as v — ((c) rises in u, and so (@) falls in u. Finally,
d(x,c)/G(x) falls in x by Claim @, and so 0(x,¢)/G(x) > d(a,c)/G(a) for all x < a.
Scaling (@) by d(a,c)/G(a), we see that it falls in n, and so (@) rises in n. O

B.2 The Stopping Hazard Rate and Eventual Quitting Chance

We claimed after Lemma @ that the stopping hazard rate S, rises in the cost ¢. To
prove this, let Ey_  be the stage-n conditional expectation defined from (@) By (E)

1 - SnE 0n+1 - 00 -
o L n(x,n,c)dx n

(¥ =) 2 Ol /Gl ddx_ N —n {5&; ))} )

26



First, 6(x,c)/G(x) falls in x, by Claim @ The hazard rate S, rises in ¢, as &,
stochastically rises in ¢, by Lemma @, and J(x, ¢) falls in ¢, by (B) and ('(¢)<0. O

Claim B.2 For some threshold number of options N < oo, the eventual quitting
chance q locally falls in search costs c if N < N, and locally rises if N> N.

PROOF: As 7= (q—d0)/(1— o), do = G(u— ()N by (L), and ¢ = (u — (), )"

by (), we have:
= (0.0 — Glu—¢()"
1= Glu—¢(e)V '

Since m(x,c) = G(x) + 0(x, ¢) by (H), when N = 1, by equation (B), we have

(23)

7= 8= @0/ - Glu— ol = [ D -

u—((c) 1-— G(U - C(C))

where the known factor R has cdf G/[1 — G(u — ((c))]. Since R is truncated with
lower support u—((c), and (' <0, R rises stochastically in ¢. So 0G/dc<0if N = 1.

If Ly(s)=sV"1/(1—s"), then dlog(1—s")/0s=—NLy(s). By sign equivalence o:
0q 0 1—7(u—(c),c)Y
o * T2 | T= G o) }

= VDO (o), ) + NI D L o)

Oc

as (' < 0. Since m(u—((c),c) = G(u—{(c) —i—fu o H (w—=r)g(r)dr by (B)f(ﬁ), with
derivative —¢’(¢)g(u—((c))[1—-H(¢(c))] in ¢, and 5G(U ¢(e))/9c = =¢'(c)g(u—((c)),

e L (Gl — ()
—x1—-H S\ Sl 1 VA
9 1 D T Lt = o) o)

The last term in (@) vanishes as N — oo, given 0 < G(u—((c),¢) < m(u—{((c),c) < 1

by (H), and Ly(s) ~ sV for 0 < s < 1 and large N. So dg/dc > 0 for all large N.

Now, 0g/0c single-crosses 0 in N, since

Oc

o1 (24)

0?(log L (s)) _ Nlog(s)sV +1— sV
0sON s(1 —sN)2

oc sV log(sV) +1— sV = RHS.
Also, RHS = 0 when s = 1, and falls in s" for s < 1. Since RHS > 0 for s < 1,

L (s) is log-supermodular in (NN, s). Since G(x) < 7(x) for all x by (H), the (signed)
last term in (@) rises in N. Hence, 9/0c < 0 as N < N, for some N > 1. O
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B.3 Hazard Rates: Proof of Theorem @

A. QuiTTING HAZARD RATES. Given Claim @, for low search costs ¢, the quitting

hazard rate Q,, = ¢, /0, rises in n since the survival chance o, falls and ¢, rises in n.

Claim B.3 The stage n quitting chance g, in (@) rises inn for small ¢, hump-shaped

in n for middle ¢, and falls in n for large c.

PRrROOF: By (@), Gni1/qn = [(N —n)/(n+ 1)]6(u—((c),¢)/G(u—((c)) falls in n. If
d(u—((c),c)/G(u—((c)) < 1/N, then g,11/¢, < 1 for all n, and hence ¢, falls in n.
Similarly, if 6(u — ((c¢),¢)/G(u — ((c)) > N, then ¢,/q,—1 > 1 for all n and thus g,
rises in n. If 1/N < d(u— ((c),c)/G(u—((c)) < N, then g, rises and then falls in n.

To see how the threshold 6(u — ((c), ¢)/G(u— ((c)) changes in ¢, use (B) to derive

1 o0
- G | HC@ =gt oy (25)

Since G is log-concave and ('(¢) < 0, the next product falls in ¢, and vanishes as
¢ — o0, since then ((¢) — —oo — and the ratio (@) falls in ¢ and vanishes as

c — OQ:

g+ u— () _ glr+u— o) G+ u—(e)

Glu—¢(e)  Glr+u—(() Glu—C(()
Finally, we argue (@) explodes as ¢ — 0: since ((¢) - oo as ¢ — 0, H(((c) —r) — 1
and lim [ g(s+u—((c))ds/G(u—((€)) = limg(—oo[1—G(u—((c))] /G (u—C(c)
00. Then §(u — ((c),c)/G(u — ((c)) falls from oo to 0 as ¢ rises from 0 to co. O

B. EXERCISING HAZARD RATES. Equation (@) below provides a formula for the
hazard rate of exercising an inside option &,. It rises in n as X, falls stochastically

in n by Lemma @ and the integral (@) falls in X,,, by log-concavity of g.

Claim B.4 We have the formula:
Ea=1— H(C(e) + En, [ / T h(CE) - ) gls + Xn>/g<xn>ds] @)

PRrROOF: Formula (E) yields o1 = () [, 0(x, ¢)"dG(x)¥". Integrating by parts,

—((c)
e = () [t = Cl0n G~ —n [ Gty

= (3)n [ 60" "o (27)

n —¢(e)
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using (o0, c¢) =0 by (B) and the g, formula in (@) Differentiating (), de(x,0)=
—H (¢(c)) g(x)+J;" h (¢(c) = s) g(s+ x)ds. Substitute d, into (@), and divide by o,,:

Tuit _ e (o)) — Sz e (5T R (C(e) —008) l9(s + x)/g(x0)]ds) n(x, n, C)d?c'
On In fufﬁ(c) n(x, n, c)dx

using n(x,n,c) = 0(x,c)" 'G(x)N "g(x) from () Substituting this and Q,, =
Gn/on into £, =S, — Q, =1—0,11/0, — Q, gives formula (@) O
C. REcALL HAZARD RATES. We characterize R, = &, — K, using (@) and a new

formula for KC,,. Let KC,, (%, ¢) be the interim striking hazard rate on entering stage n if
X, =x,. For the Ex, operator (§@), the striking hazard rate is K, = Ex, [Kn(X,, ¢)].
Consider the chance of striking in stage n if X, =z, and Z,, <((c):

¢(e) “H —7r)g(r)dr
A(ch):/_ h(n)[f;(n (% + 20 —7)g(r)

_ ”‘I[Gm f - c@)}“
I H G+ C(0) — ryglr)dr

Glo) dz,. (28)

U—2xn

Claim B.5 The interim striking hazard rate is K,(x,,¢) = 1 — H(((c)) + A(x, €).

PROOF: First, assume the searcher strikes option n if he explores it. Assume X, = x,.
After arriving at stage n, he strikes option n iff its payoff (a) dominates all prior inside
options, namely x, + 2, > &; + Z; for all j < n, (b) dominates the outside option
Xo + 2, > u, and (c¢) ex ante dominates option n + 1, namely x, + Z, > X411 + ().

Assume Z,, > ((c) and the searcher enters stage n. First, (a) is satisfied because
Xt Zn > +C(c) > X;+2Z; forall j < n— forif x,+((c) < X;+Z;, then the searcher
never explores option n. Second, (b) is satisfied because x, + Z, > x, + ((¢) > v —
for if x, + ((c) < u, then the searcher quits rather than explores option n. Finally,
(¢) is met since X, 11 < 1, and Z, > ((c). In sum, the searcher strikes option n with
chance P(Z, > ((c)) =1 — H({(c)) if he enters stage n.

Next, assume Z, < ((c¢). Given &, = x,, by the Markov property of order
statistics, the joint distribution of earlier inside options (X}, Z;) for all j < n is the
same as that of (n —1) i.i.d random options with a known factor X > x, and a payoff
X 4+ Z < %,+((c). So the probability that each prior option satisfies condition (a) is

 Jo H + 2, —r)g(r)dr
[ H( + C(e) = r)g(r)dr

PX+Z <2+ 2Z,X > %, X+ 2 <5+ ((c))

By the Markov property again, X, .1 is the first order statistic of (N — n) i.i.d.r.v.s
with cdf G/G(x,) on (—00, x,]. Event (c) has chance [G(x, + Z, — ((c))/G(x)]¥ ™.
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As event (b) holds if Z,, > u— x,, starting stage n, the chance of (a)—(c) is A(x, ). O

Claim B.6 (Striking Hazard Rate Formula) K, = Ex, [K,(X,,c)] equals:

fcnzl—H<<<c>>+EXn</0 609 [ ”g““"“d’f}"g(”’fn)ds)

IS H(C(e) = t)g(t + X,)dt g(Xx,)

PROOF: Recall that the expectation Ey, uses density 7(x,, n,c) in (@) Given (@)
and 0(x,,c) = f;o H(x,+C(c)—7r)g(r)dr by (B), the expectation Ey, [A(X,,c)] equals

i~ Cle 22 Hot2n—)9()dr 1" T Gt zn—c(e) 1V "
IUC(C){ “ h(z")[ 3(n0) } [W} dzn} (%, 1, €)di,

U—xn

fuoic(c) 77(70 n, C)d?(

Substitute 1(x,,n,¢) = §(x, )" 'G(x)Y "g(x,) from (@), and change variables in
the numerator: = X+ 2, — C(c), s = ((¢) — z, and t = r — x with supports
x € [u—((c),00), s €[0,00) and t € [s,00). Then Ey, [A(X,, )] becomes

L2 e 160D = ) [ HCE) — )g(t + x)de]"™ Glo)¥ (s + x)dsdx
fuojc(c) n(x,n, c)dx ‘

Since n(x,n, c) fo —t)g(t + x)dt]" G (x)V"g(x) by (B) and (@), and
recalling that Ey, is deﬁned using the probability density 7(x,,n, c), we have

B [A(X,. O] = Ex. /Oooh(c(c)_s) g(s + X,) [f H(C(c) t)g(t+Xn)dt]n_dS]'

9(X)  LfyT H(C(e) = t)g(t + X,)dt

By Claims @ and @, the recall hazard rate is R, =&, —K, = Ex, [B(X,,n)], where

_ [ g(s + x) 2 H () = g(t +x)de]™™
B = [ hce) -9 1 (1‘[fOWH«(c)—t)g(tm)dJ )ds' 29)

Here, B(x,n)g(x) is the recall chance at stage n if one exercises an inside option with
payoff x + ((c) immediately. For h({(c) — s)g(s + x) is the probability density of an
option with known factor x + s and payoff x + ((c). The last term is the chance that

one other option has a known factor below x + s, assuming its payoff is below x +((c).
Claim B.7 The function B(x,n) weakly falls in x.
PROOF: Put v(s, x,((c))=["H(C t)g(t+x)dt. Then v(0, x,((c))=0d(x,c) by (B)
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Rework (@), integrate by parts, and simplify via v,(s, x, ((¢))=—H({(c)—s)g(s+x):

Ben) = - [ (1‘{ ES . Eiﬂ 1>dUsmh“(C>‘” 9%;%4

as (0/0s) [7h (¢(c) = 1) [g(t+x) [g(x)]dt == (¢(c) = 5) g5+ x)/a(x). So (B gives:

B [Pt ] [r=sy]

First, g(s+x)/g(x) falls in x. Next, since H and g are log-concave, H({(c)—t)g(t+x)

is log-supermodular in ({(c), —x,t), as is the integral v(s, x,{(c)) in ({(c),—x), by
Karlin and Rinott (1980). So v(s,x,((c)) is log-submodular in ({(c), x). The first
bracketed term 0 log[v(s, x, ((c))]/9¢(c) falls in x. The last term likewise falls in x. OJ

PROOF OF THEOREM @: The hazard rate R, =&, —IC,, rises in n by (@), as B(x,n)
rises in n and falls in x (Claim @), and &), falls stochastically in n by Lemma @ U

C Stationary Benchmark Proofs

C.1 Equivalent Thin Tail Characterizations

Let £ = lim,_,p—1(1y f(x)/[1 — F(x)]. If a cdf F" has a thin tail, then ¢ = oo
Claim C.1 If f exists and F~'(1)=o00, then lim,_,p-1(1) f(s+x)/f(x) =€, Vs>0.

PRrROOF: As F~1(1) = oo, lim,,; f(F(vy)) = 0. Now, 'Hopital’s rule implies that
¢ =lim,,p-101) f(x)/[1 — F(x)] = lim,_,p-11) —f'(x)/f(x). Then for all s>0:

/ /
lim log f(s + ?C / f rt 7C = / lim Mdr = —s/,
x—00 :Hoo f(r+x) o oo f(r+x)

by the Monotone Convergence Theorem, for f'/f is monotone if f is log-concave. So

i ﬂj?(:)x) = lim oxp {log (%)} e [giggg o (f(;&)x))} e 0,

Claim C.2 If F" = f' exists and F~'(1) = oo, then F has a thin tail if and only if
lim, ,p-11) f(s + x)/f(x) = 0,Vs>0.
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PROOF: (=) Given a thin tail, ¢ = oo and f(s+x)/f(x) — 0 for s > 0 by Lemma @
(<) If lim, o f(s+1)/f(x) =0 Vs >0, then lim,_, 11y f(x)/[1 — F(x)] equals

(o) (o [ ) ([ ) ==

by continuity and the Monotone Convergence Theorem. Hence, F' has a thin tail. [J

C.2 Number of Options: Proof of Theorem H

Index the striking, recall and quitting hazard rates by the number of options N.
Claim C.3 The striking hazard rate KCY falls in the total number of options N.

PROOF: As g(s+ x)/g(x) falls in x by log-concavity, and [ H(((c) —t)g(t + x)dt is
log-submodular in (s, x) by log-concavity of H and g, Claim @’s bracketed integral
falls in &),. As A&, stochastically rises in N (Lemma @), KN falls in N. O

As the N option striking hazard rate K falls in N, K exists.
Claim C.4 K =1—H(((c)) if G has a thin tail, and K > 1— H({(c)) otherwise.

ProOOF: In Claim @, the n'* known factor &, — G71(1) = oo in probability, as
N — oo. If G has a thin tail, then lim, . g(s + x)/g(x) = 0 for s>0, by Claim @,
and so g(s+AX,,)/g(&,) vanishes as N — oco. By Claim @, limy oo KY = 1-H(¢(c)).
Assume G lacks a thin tail. Let I'(s, &,,) be the bracketed term in Claim @’s
integral for KC,,. As lim, o g(t + x)/g(x)=e* for £ € (0,00) by Claim @,

_f H(¢(c) - )g(+ g(dt [ H(((e) — )"t

)= o) — gt ) Jgtodt [ HIC(e) = t)e Pt

>0 as x — 00.
(31)

As lim, o0 g(s+1)/9(x) = e % > 0 and X, — G~1(1) = oo in probability as N 1 oo,

the second term in the Claim @ formula is positive as N Too: K°>1— H(((c)). O

Claim C.5 R falls in the number of options N and R> = 0 iff G has a thin tail.

PROOF: As B(x,n) falls in x by Claim @, RN = Ex,[B(X,,n)] falls in N because
X, rises stochastically in N by Lemma @ Since RY > 0 falls in N, limy_,o RY =
limy o Ex, [B(X,,n)] exists. Then limy o RY = lim, ,g-1 11y B(x,n), because X,
converges to G71(1) in probability as N — oo.
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If G has a thin tail, then g(s+ x)/g(x) vanishes for all s > 0 as x — G1(1) =
by Claim @, and so lim,_,g-11) B(x,n) = 0 by (@)

If G does not have a thin tail, then the parenthesized term in (@) is1—T(s,x)" !
(recalling (@)), and its limit is boundedly positive as x — G~'(1), for any s > 0.
Also, lim,_,g-11) g(s + 1) /g(x) = e** for some £ € (0, 00) by Claim @, and thus it
is boundedly positive for any s > 0. Hence, lim,_,¢-1(1) B(x,n) > 0, by (@)

Altogether, limy_,oo RY = lim,_,g-1(1) B(x,n) = 0 iff G has a thin tail. O

n

Claim C.6 QY falls in the total number of options N and has limit Q% = 0.
PrROOF: Expanding Q,, = ¢, /0, using (B) and (@)

oV — §(u — ¢(c), e)"Gu — ¢(c)N ™
Yo 0 o) G N g () da

Easily, QY falls in N, since G(x)/G(u — ((c)) > 1 except at x = u — ((c), and so
[G(x)/G(u—((c))]¥~™ is monotone in N. By the monotone convergence theorem, we

can swap the (infinite) limit as N — oo and integration: Nlim N = Q> =0. O
—00

D Web Search Proofs

D.1 Optionality in a Gaussian World: Proof of Lemma @

As « increases, the hidden factor experiences a mean preserving contraction, and so
((ayc) falls. As a1 1, (@) reduces to ¢ = fco(cw) ds = —((a, ), and so ((a, ¢) | —c.
Next, change variables to s’ = s/v/1 — a2 in (), and let z(a) = ((a,c)/V1 — a2
This yields ¢/v1 —a2 = ff(c;) [1—®(s")]ds’. The LHS rises to co as « rises to 1.
Since the mean of a left truncated Gaussian distribution is finite, f;&) [1—®(s)]ds' =
Emax{z(«),S"}] — z(«) is finite if z(a) > —00. So z(a) | —o0 as « rises to 1. O

Claim D.1 The search optionality ((c, c) is concave-convex in the accuracy «.

PROOF: Again, let z(a) = ((«a,c)/v/1 — o2. Differentiation yields
o« ¢(2(a))
o) = e T e @) <

_ @ [, f o) Y’
el = TG - 8((a) (1 ey “})' (#2)

First, ¢(2)/[1 — ®(2)] — z — oo as z | —oo, and is positive and decreasing. For it
is well-known that the conditional mean y(z) = E[Z|Z > z] = [ sd®(s)/[1 — ®(z)]
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equals the inverse Mill’s ratio, namely, ¢(z)/[1 — ®(z)]. But y(z) — 2z has slope less
than one, by log-concavity of the Gaussian. Since z(«) decreases to —oo as o T 1,

the bracketed term in (@) reverse single-crosses through 0 as « traverses [0,1]. O

D.2 Accuracy and Behavior: Proof of Proposition

Set X =aX and Z =+/1—a?Z in (B) to derive the attraction

(o, x) = /0 T o (%) é(x + 8)ds + D(z). (33)
By (), q = m(a,l(a,u,c))N. We argue in Appendix §@ that
on(a, l(a,u,c))
Oa

S {1 — (g(a,c) /m)} Ua,u, )d(la,u,c)) /. (34)

We have 0q/0a > 0 iff On(a, {(a,u, c))/Oc > 0, and so by (@), iff {(a,u,c) <0, or
((a, ¢) > u. Given Lemma H, this validates Figure @ and proves the first statement.

Next, by (E), the expected search time 7 = N f;;:u’c) (o, 2)N "o (x)dxr. We show
that 7, is single-crossing in u, namely, negative for lower v and positive for higher w.

Now, £y (v, u,c) falls in u, and for low enough wu, ¢,(cv,u,c) > 0 by () Since
Ta(a, z,¢) < 0 by Claim @ (below), we have 7, < 0 for low enough u, from (B)

Suppose that wu is large so that ¢,(«a, u,c) < 0. Since ly(a, u,c) = —[l(a,u,c) +
Calayc)]/a and ¢, < 0 (Lemma B), l(a,u, ¢) > 0. Differentiate (Q), and then change
variables s = x — {(a, u, ¢). Writing ¢(«, u, c) = ¢, the slope O1/0a equals:

oo

— U N7(a, )N 1p(0) + N(N — 1) /71'(04, 0+ 8) N2 (a, l + 8)p(€ + s)ds

_ N—1 (e, 0+ 8) 1V male, £+ 5) p(€ + )
= N(o, )N '6(0) (—m (N=1) /0 [W] (o, l+5) 6(0) ds)

Write this as N7(a, )N 1¢(0)T (o, u). Now, the integrand is negative and rises
in ¢, because: (i) 0 > my(a,l + s)/m(a, ¢ + s) rises in ¢ by log-supermodularity
of (e, z) (Claim @), (17) m(a, €+ s)/m(a, 0) falls in ¢ by log-concavity of 7(«, z)
in z (Claim @), and (7i7) the ¢ ratio falls in ¢, as ¢ is strictly log-concave. Since
ly(a,u,c) > 0, the integrand rises in u. Also, £, (a,u,c) falls in u by () As
T (v, ) is increasing in u, 7, (o, u) is strictly single-crossing in u. But as noted above,
To(a, u) < 0 for small enough u. When v — oo, £, (o, u,c) — —oo and so Y (a, u) > 0,

and 7, (a,u) > 0. So 7,(, u) changes sign exactly once as u rises from —oo to co.
Claim D.2 The attraction m obeys mo(a,x) < 0 < (log[m (v, T)])za
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PRrROOF: Since 9[¢(a,c)/vV1 — oﬂ] /804 < 0 by Lemma a, differentiating (@) yields
To < 0. Next, rewrite (@) as m(o, ) = [7_¢(x + s) fe, s)ds, where

f(a,s)E@((C(a,c)—as)/\/l—a2> fors >0 and f(a,s)=1for s <0.

Since the Gaussian density satisfies ¢'(x) = —z¢(x), we have

dloglr(a,x)] [T @+ s)(x 4 5)f(a,s)ds [T ré(r) fla,r — a)dr
O I o(a+ 5)f(a, s)ds I o(r) flanr —z)dr

(35)

This is the mean of a r.v. R with density ¢(r)f(«,r — x). Next, we argue f(q,s) is
log-submodular, or equivalently f(«,s2)/f(c,s1) falls in « for all sy > s;. First, if
s1, 82 < 0, we have f(a, s2)/f(a,s1) = 1/1 = 1 weakly falls in . Second, if s1, 59 > 0,
then f(a,s;) = ®((((a, ¢) — as;)/V/1 — a?) for i = 1,2. Here, it thus suffices that

dlog[f(a, s)] ___as ¢(C(a,c)—as) /(I> (C(a,c)—Ozs)‘ (36)

Js V1—a? V1—a? V1—a?
falls in . This follows since ® is log-concave, and because [((a, ¢) —as]/v/1 — a2 falls
in a, as [¢(a,c)/V1—a?]/0a < 0 by Lemma B and s > 0. Third, for s; <0 < so,
fla,s9)/f(a,81) = fla,s9) = @ (C(T‘/MSZ falls in «. Altogether f(a,s) is log-
submodular, and thus the middle term in (B5) falls in «, or 92 log[r(«, x)]/dadz > 0.

Claim D.3 For z > 0, the attraction © obeys m,(c,x) > 0 > (log[m(a, x)]) sz

Proof: For the log-concavity of m(«, ) in x, integrate (@) by parts to get

c) —as

) = m/ (ﬁ) Bz + 5)ds + (z) <1 p (%» |

Then

(o, z) =

a o0 C(a,c)—as) ( ( ((a, ) ))
- r+s)ds+o(x) |1 — | —= >0
Vi—a? Jo ¢( =z ) Alotsldstoln) Voo
Since the Gaussian density ¢ is hump-shaped and peaks at 0, the RHS falls in > 0.
In other words, (log[m(c, x)])z: < 0 for z > 0. O
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D.3 Accuracy and Quitting Chance: Proof of Equation (@)
Put u = {(a, ¢) and = = {(a, u, c) in (@) Then (0/0a)m(a, £, u, c)) equals

ol(a,u, c)

ot i) St - 2520t [1 - (G255

= ot [ oS ) s Do, [1 - (S

(ayuye \/1 — o2 \/]. —a? oo

_ Cﬁi§9£§¢wwmwnﬁ—@(§%§%ﬂ

The second equality uses the Gaussian density property 0¢(s)/0s = —s¢(s). Since
the quitting chance is ¢ = m(a, £(a, u, c))™ by (),

90— N0 (0, 0,0))"" (_“ el C))¢ (“ - ifo" C>> [1—@(%)1 (37)

D.4 Accuracy Helps the User

Claim D.4 The user’s marginal benefit of accuracy is positive and single-peaked in u.

PROOF: Since 0V /0u = q by (@), 02V /0uda = 0q/0a. We can derive OV/da by
integrating (@) over u. We use the boundary condition 0V/0a|,—~ = 0, because as
u — oo a user never clicks through and the accuracy becomes irrelevant for payoff.

Integrating (@) in u yields

Wl e,u) _ {1 _ (M)l /; Nr(o, )N Ladd(z).  (39)

da v1-— a? (a,u,c)
Since {(«, u, c) > —oo for any u > —o0, we have fgzzuc) xd®(x) > 0. As (o, z)V"tis

positive and strictly increasing, and f;a we) xzd®(z) > 0, the RHS of (@) is positive.@
Hence, 0V /0a > 0. But the lower support of the integral in (@) rises in u. As the

integrand is first negative and then positive, 9V /0« rises and then falls in w. 0

22By Karlin and Rubin (1955), if f is single-crossing and [ f(z)dz > 0, positivity is preserved if
one multiplies the integrand by a positive and increasing function b(z), namely [ f(z)b(z)dz > 0.
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D.5 Value of Search Engine: Proof of Proposition

A. CHANGING OuUTSIDE OPTION. Let g, be the value of ¢ when the accuracy is a.

By (d),

IV(a, c,u) —V(0,c,u))
ou

To show that the value of search engine rises/falls in u as ((0,¢) 2 u, we prove a

= 4o — qo-

reverse single crossing property: ¢, — go < 0 when ((0,¢) < u.

Let ¢(0,¢) < u. If a = 0 (so no known factor), the user never clicks, and elects his
outside option with chance gy = 1. So g — qo < 0 for all &/ > 0. Posit ((0,¢) > u.
If o = 0, the user searches every period, choosing his outside option if all N searches
fail. So g = ®"(u), by prospective independence. For o > 0, the user exercises the
outside option at least if it is best (chance ®V(u)). So ¢, > ®"(u), and ¢, — qo > 0.

Next, I(a, ¢, u) = V(a, c,u) — V(0,¢,u) — 0 since V(«, ¢,u) —u — 0 as u — o0
for all . When u = —o0, we have V(a, ¢, —00) = ElaX, + V1 — a2Zy] — 7¢ — k and
OV /0a|a=0 = E[X;). Also, E[X}] > 0 when a = 0, as a user is likely to exercise an
earlier web site and the known factors are sorted in descending order and have zero

expected value. So I1,(«a, ¢, —00) > 0 at a = 0, and II(«, ¢, —00) > 0 for all o > 0.

B. CHANGING CLICKING CoOST. Equation () yields:

IV (a, c,u) —V(0,c,u)]
dc

=T0 — Tq-

Now we argue that the value of search engine is single peaked in c. First, as ¢ — 0,
((a,¢) = o0, by (), and thus the cutoff w, ;1 — oo for all n, by Lemma a In the
limit, the user clicks every web site, and so V(a, ¢, u) — Elmax{u, Wy, Wa, ..., Wx}].
Next, as ¢ — o0, ((a,c) = —o0, and so the cutoff w,; — —oo for all n, by
Lemma a In the limit, the user never clicks a web site, and thus V' («, ¢, u) — u.
Since ((0,c¢) is continuous in ¢, and ((0,¢) — 4oo respectively as ¢ | 0 and
¢ T oo, and as 9¢(0,c)/0c < 0, there exists ¢ > 0 such that ((0,¢) < w iff ¢ > ¢.
If ¢ > ¢, the user never clicks, and his search time is 7y = 0; hence, 79 — 7, < 0.
Suppose ¢ < ¢. When a = 0, the user stops at stage n < N iff the current web
site payoff exceeds w, 1 = ((0, ¢), namely, if z, > ((0, ¢), recalling Lemma a When
o > 0, the user stops if az, + V1 — a2z, > ax,11 + (o, ¢). Since z, > 2,1, a user
accepts web site n if 2, > ((a,c)/v/1 — a2. Since ((a, c)/v/1 — a2 falls in «, we have
C(a,e)/vV/1—a? < ((0,c), and so a user is more likely to stop if & > 0 than if a = 0.

Hence, 19 — 7, > 0. All told, the search engine value is single-peaked in the cost ¢. [J
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D.6 Search Engine Synergies: Proof of Proposition

First, the number of options IV and accuracy « are complements. To see this, consider
the slope 0V /0«. This exists by (@), and is positive. Also, differencing (@) in N:

Z—Z(NJrl) _ Z—Zw) . /;O (0, 2)N[(N + V(e 2) — Nlzo(z)dr.  (39)

(ayu,c)

Now, [(N + 1)m(a, x) — N] transitions negative to positive exactly once as x increases
from —o0 to oo, as m,(a, x) > 0 by Claim @ Also, (o, —00) = 0 and 7(a,00) =1
by (@), since ¢(a, u, ) rises from —oo to 0o as u rises from —oo to 0o, given (@)
Given the x factor, the integrand has 0 or 2 sign changes. In the first case, we
are done. Otherwise, the sign sequence is +, —, + as x rises from —oo to oco. Since
ly(a,u,c) > 0, the difference (@) first falls in w, then rises, and finally falls. If (@)
vanishes as u — oo (true, as £, («, u, ¢) explodes), and is positive at the local minimum
u = u where the integrand shifts from falling to rising, then (@) is always positive.
Now, u only affects the integral in (@) via the lower support ¢(c,u,c). As its
minimum is at u = u, and ¢, (a, u, ¢) > 0, the integrand [(N +1)7(«, ) — N]x changes
from 4 to — at x = {(a, @, ¢). Since [(N+1)7(«,z) — N] and x single-cross in z, their
product’s first sign change is at * = ¢(«, 1, ¢). There are only two possible cases:
CasE 1: (N+1)7(a, (e, u,c)) = N AND £(a, u,c) < 0. Since (N+1)m(a,z)— N
rises in z by Claim @, we have (N + )m(a,z) — N > 0 for x > {(a,u,c). By
Claim @, JV/0a > 0. By (@), fz;ﬁ)ﬂ(&,x)]vxqﬁ(x)dx > (. Since the integrand
single-crosses in x, the integral remains strictly positive when the integrand is scaled
by the increasing function b(z) = (N + 1)w(a,z) — N > 0 on [{(a, ), 00), as noted
in footnote @ Altogether, the integral in (@) is strictly positive at u = .
CASE 2: (N +1)m(a, (e, u,c)) < N AND {(c, u,c) = 0. Since the expected time
T increases in N by (the text result after) Theorem B, its definition in (Q) yields:

/eoo (e, 2)V (N + Dr(a, ) — N]o(x)dr = 7(N +1) — 7(N) > 0.

()

This integrand is single-crossing in z, and is the integrand in (@) times 1/z. Since
x > l(a,u,c) =0, the integral in (@) is positive, by Karlin and Rubin (1955). O
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D.7 Proofs for Sequential Web Search in §8.3

Claim D.5 Posit limit (*): the outside option u explodes (u 1 oo), and the clicking
cost vanishes (c | 0) but the CTR holds constant. Then (a) the limit coefficient By is
positive, and (b) the coefficient By tends to 0.

PROOF OF (a): Let E¢ be the click-through event Xy > u — ((c¢) or T > 1,

by (@) The OLS sample estimate of 3, is 81 = Cov,(T, W1|E¢) /Var.(W;|E¢), where

Cov(T, W1|E¢) and Var.(W;|E¢) are the sample covariance and variance given Ec.

Then f; converges in probability to 8, =Cov(Wy, T|E¢)/Var(W;|E¢) as N 1 oc.
Since the cdf of X; is P(X; < 1) = G(x)", the conditional expectation

EWAEC] = [ [ (6 + 20)dH (z1)dG ()™ /1L = Glu = ¢(e)™]

is constant as u — oo,c | 0, fixing u — ((¢) = ¢ (limit (x)). Similarly, since
Var(W|E¢) = E[WE|Eq] — E[W1|E¢)?, the limit variance only depends on £. So
the sign of ; in this limit depends on Cov(W;, T|E¢) > 0. Let t(x, 21,4, c) be the
expected number of searches when the user clicks through if X} =x and Z;=2z. Then
Cov(Wh, T|E¢) =Cov(Wi, t(Xy1, Z1,u, c)|Ec). We derive a formula for t(x, 21, u, ¢).

Assume X; = xy and Z; = z. By Lemmas m and H, the user enters stage n iff
X, + C¢(e) > Q, = max(u, wy,ws, ..., w,). In the limit © — oo and ¢ — 0, and so
¢(c) — oo, the condition becomes X, > u — ((c) = £. By the Markov property of
order statistics (footnote B), the distribution of the known factors of the remaining
N — 1 web sites is the same as N — 1 4.i.d. draws from cdf G(x)/G(x) for x < 1. So
in limit limit (%), a randomly selected option in the subgame is clicked iff its known
factor exceeds ¢, which occurs with chance [1 — G(£)/G(x)]. Since each of the N — 1
options is independently clicked with chance [1 — G(£)/G(x)], the expected number
of searches in the limit u — oo,c — 0 is (N — 1)[1 — G({)/G(x)]. Fixing ¢,

Jm_temnd = Lk (V- D0 - G0/ = fw). (40)
Altogether, Cov(Wi,T|E¢) — Cov(X; + Z1,t(X1)|Ec) at the limit. Since X is
independent of Z; even given Eq, Cov(X; + Z1,t(X))|Ec) = Cov(Xy, t(&))|Ec).
Finally, Cov (X, t(X1)|Ec) > 0 as t(x) strictly rises in x5 by (@) Altogether, the
coefficient 8 = Cov(W1, T|E¢)/Var(W,|E¢) > 0 as u — oo and ¢ — 0. O

PROOF OF (b): As N explodes, the OLS estimate 6} converges in probability to
Cov(T, Z1|E¢)/Var(Z1|E¢). As X and Z factors are independent, the conditional
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expectation of Z; has cdf H under E¢. All told, Var(Z;|E¢)=Var(Z) >0 as N — 0.

If (X1, 21) = (1, 21), then the limit #(X]) of expected search times ¢(x1, 21, u, ¢) as
u— o0 and ¢—0 is constant in 2, by (@) As t(x1, z1,u,¢) < N — 1, the Dominated
Convergence Theorem implies that Cov(¢t(X1, 21, u, ¢), Z1|E¢) — Cov(t(X1), Z1|Ec).
So By = Cov(t(Xy), Z1|E¢)/Var(Z2) =0, as X; and Z; are independent on Ec. O

Claim D.6 If h(z) has a thin tail, then s has a non-negative limit given (x).

Proof: Let Ep be the event that the user eventually purchases. By OLS, g3 =
Cov(T, X1 |Ep)/Var(X;|Ep), where Cov(T, X} |Ep) and Var(X;|Ep) are the covariance
and variance. Then (3 is non-negative provided Cov (T, X;|[Ep) > 0 in the limit (%).

The user clicks through if he buys, and buys if he clicks through and X} + Z; > u.
So P({X1+ 2, > u}n{Ep}) = P{X1+2, > u}n{Ec}) = [7 [1—H(u—x)]dG(x)".
Since P(Ep) =1—-q¢=1—7(u—¢(c),c)" by (lﬁl), Bayes rule gives:

P<X1+Zl > UlEp) =

Jl = Hu — 0)JdG(x)™ /°° {1 — H(C(c) -

s)
[ — 70N [ —r(l.oN } AG(s+0)"

By (B)f(ﬁ), the limit as ((¢) — oo as ¢ — 0 of the bracketed term in the integrand is
1— H(¢(c) — s)

- o m h(¢(e) — 5)
cQ)so0 1= [ g(l+1)H (C(c) — 1) ds + GO)IN — ceyvoo N [ g(l+ 1) (C(c) — 1) dr

by I'Hopital’s rule, since lime(o) o0l [5 g(€+7)H (((¢) — ) ds+G(£)] = 1. In limit (%):

(1:1_% P+ 2 > ulEp) = lim I G(s+ €) Yg(s +0)h (¢(c) — s) ds.

(€)= fo (r 4+ 0)h ({(c) —r)dr (41)

Write (@) as lime(e) oo E[G(S+0)N 1], where the r.v. S has density g(s+0)h (¢(c) — s).
Since h has a thin tail, as {(¢) — oo in the limit (), A ({(c) — s1) /R ({(c) — s2) — 0
for s; < sy by Claim @, whence E[G(S+0)N~1 — 1, and so P(X,+ 2, >u|Ep) — 1.
In the limit (x), since lim P(X; + 21 > u|Ep) = 1, we have Cov(T, X;|Ep) —
Cov(T, X1|[{X1+ 21 > u}NEp) — 0. Next, {X1+2; > u}NEp = {X1+2; > u}NE¢,
as Ep C E¢, while {X) + 21 > u} N Eq implies {&] + Z; > u} N Ep, as the user
eventually purchases if he clicks through and the first website dominates the outside
option. So Cov(T, X1|{X1 + 2, > u} NEp) = Cov(T, X1 [{X1 + Z; > u} NEp), ie

lim Cov(T, X1 |Ep) = lim Cov(T, X, |{X) + Z1 > u} NE¢) in the limit (x)  (42)
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Given E¢, the expected unconditional search time 7' is the expectation of ¢(X7, 21, u, ¢),

i.e. the mean number of searches when X} =x, Z; =2z and the user clicks through:
COV(T’7 X1|{X1 + Zl > U} ﬂ]Ec> = COV(t(Xl, Zl, u, C), X1|{X1 + Zl > u} N ]Ec) (43)

By equation (@), t(x1, z1,u,¢) — t(x) in limit (x), which also rises in x. Then
lim Cov(t(X1, 21, u, ¢), Xy [{X1+ 21 >u}, Ec)=lim Cov (t(Xy), X1 |{ X1+ 21 > u}, Eg) >
0. So by (1d)-(1d), tim 85 = lim Cov(T, X,|Ep)/Var(X:|Ep) > 0 in the limit (x). O

References

An, M. Y. (1997). Log-concave probability distributions: Theory and statistical
testing. Duke University Dept of Economics Working Paper.

Armstrong, M., J. Vickers, and J. Zhou (2009). Prominence and consumer search.
The RAND Journal of Economics 40(2), 209-233.

Armstrong, M. and J. Zhou (2011). Paying for prominence. The Economic Jour-
nal 121(556), 368-395.

Arnold, B. C.; N. Balakrishnan, and H. N. Nagaraja (1992). A first course in order

statistics, Volume 54 Siam.

Baye, M. R. and J. Morgan (2001). Information gatekeepers on the internet and
the competitiveness of homogeneous product markets. American Economic Re-
view 91(3), 454-474.

Chateauneuf, A., M. Cohen, and I. Meilijson (2004). Four notions of mean-preserving
increase in risk, risk attitudes and applications to the rank-dependent expected
utility model. Journal of Mathematical Economics 40(5), 547-571.

Choi, M., Y. Dai, and K. Kim (2016). Consumer search and price competition. mimeo.

De Los Santos, B., A. Hortagsu, and M. Wildenbeest (2012). Testing models of
consumer search using data on web browsing and purchasing behavior. American

Economic Review 102(6), 2955-2980.

De Los Santos, B., A. Hortacsu, and M. R. Wildenbeest (2013). Search with learning.
SSRN Working Paper.

41



Diamond, P. and J. Stiglitz (1974). Increases in risk and in risk aversion. Journal of
Economic Theory 8(3), 337-360.

Dinerstein, M., L. Einav, J. Levin, and N. Sundaresan (2014). Consumer price search

and platform design in internet commerce. mimeo.

Doval, L. (2013). Whether or not to open pandora’s box. Discussion Paper, Center

for Mathematical Studies in Economics and Management Science.

Eliaz, K. and R. Spiegler (2016). Search design and broad matching. American
Economic Review 106(3), 563-86.

Ganuza, J.-J. and J. S. Penalva (2010). Signal orderings based on dispersion and the

supply of private information in auctions. Econometrica 78(3), 1007—1030.

Heckman, J. J. and B. E. Honore (1990). The empirical content of the roy model.
Econometrica, 1121-1149.

Jewitt, I. (1989). Choosing between risky prospects: the characterization of compar-
ative statics results, and location independent risk. Management Science 35(1),
60-70.

Karlin, S. and Y. Rinott (1980). Classes of orderings of measures and related corre-
lation inequalities. i. multivariate totally positive distributions. Journal of Multi-
variate Analysis 10, 467-489.

Karlin, S. and H. Rubin (1955). The theory of decision procedures for distributions
with monotone likelihood ratio. Applied Mathematics and Statistics Laboratory.

Kim, J., P. Albuquerque, and B. Bronnenberg (2010). Online demand under limited
consumer search. Marketing science 29(6), 1001-1023.

Leadbetter, M. R., G. Lindgren, and H. Rootzén (2012). Extremes and related prop-

erties of random sequences and processes. Springer Science & Business Media.

McCall, J. J. (1970). Economics of information and job search. Quarterly Journal of
Economics 84(1), 113-126.

Mortensen, D. (1987). Job search and labor market analysis. In O. Ashenfelter
and R. Layard (Eds.), Handbook of Labor Economics, Volume 2, Chapter 15, pp.
849-919.

42



Nolan, J. (2009). Stable distributions. Math/Stat Department, American University.

Olszewski, W. and R. Weber (2015). A more general pandora rule? Journal of
Economic Theory 160, 429-437.

Rosenfield, D. B. and R. D. Shapiro (1981). Optimal adaptive price search. Journal
of Economic Theory 25(1), 1-20.

Weitzman, M. (1979). Optimal search for the best alternative. Econometrica 47(3),
641-654.

Zhou, J. (2016). Competitive bundling. Forthcoming in Econometrica.

43



Online Appendix for
“Optimal Sequential Search Among Alternatives”

October 2016

A The Value Function

Claim A.1 As the search cost c rises, the value function V,,(€,,) grows weakly steeper.

PROOF: After the last draw, the terminal value function is Vi (£2) = Q, and so the
claim is trivially true. Suppose the claim holds at stage n+1. If 2,, > w, 1, then the
searcher stops at stage n and V,/(€2,) = 1. Thus V() remains unchanged as c rises.
If Q, < Wpeq, then V/(Q+) = Fyy () V! (Qa+) by (). Since V7, (9,+) rises in
¢, so does V,(Q,+). If Q, = Wy41, then V) (Q,+) rises from F,11(Q,)V, 1 (2,+) to
1 because W, falls in ¢ and V), ;(€,+) < 1 by Lemma E In all cases V/(§2,+) rises
in ¢ and thus claim holds at n. Inductively, the claim is always true. ([l

By Lemma E, the slope V() in (@) is the chance that the best-so-far Q2 will be
eventually exercised. In the same spirit, now we show that the derivative of —V,,(Q)

with respect to the search cost ¢ equals the expected number of remaining searches.

Claim A.2 (Pre-Query Value Differentiability) The value function V,(Q,) at
period n is differentiable in the search cost ¢ when the stage n best option so far
Q, # Wi for j € {n+1,...,N}. The derivative —0V,,(§,)/0c is the expected

number of remaining searches.

PROOF: Assume 2, # w;+1 = xj41 +((c) for j € {i,..., N}. After the last draw,
the terminal value function is Vi (Qx) = Qu. Since OVy(Q2y)/0c = 0, all claims are
true at stage N. Suppose the statements hold for stage n+1. At stage n, if Q,, > W, 11
then the searcher stops searching. By (@), we have V,,(Q,) = Q, on [wW,41,00) and so
OVn(Q,)/0c = 0. If Q,, < W41, then the searcher continues to stage n + 1. In this
case, —0V,,(2,)/0c = 1 — [0V511(Q) /O] Fri1(2,) — fg:[@VnH(z)/@c]anH(z) by
(@) The integral exists because 0V}, 11(z)/0c exists except at finite number of points.
The value of —0V,,(€2,,)/0c equals 1 plus the expected number of remaining searches.
Inductively, the statement holds for all stages. O

Next, we show that the ex ante value V is differentiable in v and c as long as X
is non-degenerate. Consider the stage after the realization of ¥ = {x, a2, ..., av } but

before the searcher explores any option. Let Vy(u,c,Z) be the searcher’s expected

1



payoff. By Lemma B and Claim , Vo(u, ¢, %) is differentiable in u and ¢ except
when v = x; + ((c) for any j € {1,...,N}. The searcher’s ex ante payoff before
the realization of the known factors is V(u,¢) = E[Vy(u,c, X)] where the expecta-
tion is taken over X. Both dV(u,c)/du and dV(u,c)/dc exist as the cases where
Vo (u, ¢, X)/0u and dVy(u, ¢, X)/dc do not exist are of measure zero.

The slope 0Vy(u,c, ¥)/0u is the quitting chance given ¥ by Lemma E Simi-
larly, —0Vi(u, ¢, X)/0c is the expected search time given ¥ by Claim @ Thus (@)
is true, namely 0V(u, ¢)/0u = q and 0V(u,c)/dc = —7. O

B Hazard Rates

The initial quitting chance ¢y = G(u — ((c))™

rises in u and ¢ because ('(¢) < 0 by
(@) Later ex ante quitting chances ¢, =~ 0 for any 1 < i < N, for all small enough
¢ > 0 and large enough ¢ < 0o, because the searcher never stops at an intermediate

stage n when search is very cheap or prohibitively costly.

Claim B.1 The stage n quitting chance q, is single-peaked in ¢ and u, for1 <n < N,

and gy falls in c.

PRrROOF: Consider () First, G(u — ((c)) is log-concave in ((c), since G is log-
concave. Also, since we have assumed that H and g are log-concave, §(u — ((c),c) =
I H (¢(c) = r) g(r+u—¢(c))dr is log-concave in ((c) by Prekopa’s Theorem B since
log-concavity is preserved under multiplication, g, is log-concave in ((c) and thus is
single-peaked in ((c) for all 1 < n < N. Because ('(¢) < 0, g, is single-peaked
in ¢. Similarly, G(u — ((c)) and d(u — {(c),c) are also log-concave in u, thus g,
is single-peaked in u for all 1 < i < N. Finally, (B) implies that 0(u — ((c),c) =

fuojC(c) H (u — r)dG(r) falls in ¢ and u, and thus so too does qy = 6(u — (c), ). O

Claim B.2 The interim striking hazard rate K, (x,,c) rises in c and x,.

PROOF: Since ('(¢) < 0, the integrand of (@) rises in ¢, since the bracketed terms
do. As the integrand in (@) is h(¢(c)) if z, = ((c), its partial derivative in ¢ from the
Fundamental Theorem of Calculus is ¢’(¢)h({(c)). This cancels with —0H ({(c))/dc
in differentiating KC,,(x,,¢) = 1 — H(¢(c)) + A(%, ¢). So K,(#, ) rises in c.

23By Prekopa’s Theorem, log-concavity is preserved under partial integration. See |An (11997).



Next, K, (x,,c) rises in x,. It suffices that A(x,, c) rises in x,. To this end,

¢) — d
A(;(n,c):/_ h(z,) [fO H(c C() t)g(t + x,)dt

”‘[G(mzn @Y

T H(C(@) — D9t + %)t ) e

changing variables r =t+, in (@) The first bracketed term is E[H (z,—1)/H ({(c)—
T)], for the new r.v. T" with density H(((c) —t)g(t + x,). As g is log-concave, T falls
stochastically in #x,. The first bracketed term rises in x, as H(z, — T)/H(((c) — T)
falls in T, as H is log-concave and z, < ((c). The second bracketed term rises, given

G log-concave and z, < ((c). As the integral support rises in x,, so does A(x,,c). O
Claim B.3 (Striking Hazard Rate) K, rises in ¢ and falls in u .

PROOF: First, K,, = Ex, [K,.(X,, c)] rises in ¢ as K,,(x, ¢) rises in x, and ¢ by Lemma
@ and X, rises stochastically in ¢ by Lemma @: For the direct effect of greater search
costs ¢ and selection bias on x, reinforce.

Second, as g(s+x)/g(x) falls in x by log-concavity, and [~ H(¢(c)—t)g(t+x)dt is
log-submodular in (s, x) by log-concavity of H and g, Claim @’s bracketed integral
falls in X,,. As X, stochastically rises in u (Lemma @), IC,, falls in u. [

Claim B.4 (Recall and Quitting Hazard Rate) R falls and QY rises in u.

PRrROOF: As B(x,n) falls in x by Claim @, RN = Ey, [B(X,,n)] falls in u because
X, rises stochastically in v by Lemma

Recall that S,, = Q,, + K,, + R,,. Since X, stochastically rises in u by Lemma @,
the stopping hazard rate S, rises in u by (@) Since §,, rises in u and KC,, and R,

fall in u, by Claims @ and @, Q,, rises in wu. O
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