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Abstract

We explore costly sequential search among finitely many risky options, and
an outside option. Payoffs are the sum of a known and hidden random factor.
(a) We resolve a long open question about how riskier payoffs impact search
duration: expected search time is higher for more dispersed idiosyncratic noise.
(b) Since options differ ex ante, we incorporate selection effects into search:
Counterintuitively, with few options, the quitting chance falls if search costs
rise; also, while stopping rates rise over time, earlier options are recalled more.
(c) We find that the stationary search model is a misleading benchmark: For as
the number of options explodes, the recall chance is bounded away from zero
if the known factor has a distribution without a thin tail (eg. exponential).
(d) A special case of our model captures web search engines that rank order
options: We prove that the click through rate — the chance of initiating a search
— is a poor quality measure since it falls in accuracy for expensive goods.
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1 Introduction
We develop a general theory of search among finitely many options. Solving an open
question, we determine when search duration rises in risk. By positing a tractable new
model where option payoffs additively reflect hidden and observed random factors,
we allow for the analysis of selection effects. This alters basic search theory insights
— for example, recall of options may persist in the infinite horizon limit. A special
case of our model yields a tractable framework of web search with new insights.

Our paper enhances the pure theory of sequential search, which has not advanced
much since Weitzman’s influential 1979 search model.1 Despite a nonstationary search
model with finitely many known distinct sampling distributions, Weitzman precisely
characterized which current or prior option should next be searched using a simple
index rule. Quite unlike stationary search, he found that one optimally sometimes
wishes to recall a previously explored option. While both elegant and conceptually
innovative, Weitzman’s model offered few other new behavioral predictions.

We reformulate his framework to address this shortcoming. We introduce and fully
solve a nonstationary sequential search model that yields a rich set of comparative
statics, that is also general enough for a range of applications. We assume one known
outside option, and finitely many inside options; payoffs are the sum of independent
random known and hidden factors, drawn from logconcave distributions. Ex post, our
known factors are fixed, and this yields a special case of Weitzman (1979). Here, a
searcher optimally rank orders options by their known factors, and then explores them
in this order, until either quitting search, recalling a previously explored option, or
exercising the current option. Our additive two factor formulation sheds light on the
probabilities of these three stopping events. Notably, we derive the first comparative
statics for recall probabilities and for search duration in sequential search theory.

Since our known factors are random, we also generalize Weitzman (1979), ex ante.
For his sampling payoff distributions are themselves random objects in our model.
The resulting search model is ideal for estimation — as consumer preferences and
information about products searched are unobservable to econometricians. Since we
prove that options are explored in order of the known factor orders, we characterize
search behavior ex ante, unconditional on preferences or information. Our predictions
are driven by selection effects that so far have not been well-captured in search theory.

A final special case offers a tractable model of web search. We assume that before
1Two notable exceptions are Olszewski and Weber (2015), who find a more general index rule,

and Doval (2013) who allows the searcher to freely exercise an unexplored option.
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any ranking, option payoffs are independent Gaussian random variables. The search
engine then exploits its knowledge of web pages and user cookies (e.g. the PageRank
algorithm) to parse option payoffs into predicted (known) and idiosyncratic (hidden)
factors — and a more accurate search engine has a lower idiosyncratic variance and
higher predicted variance. Finally, it presents web pages to the user in order of
decreasing known factors. In this story, the user quits if he exercises his outside option.

With stationary search, the plot of the value function is initially constant at the
reservation prize, and then coincides with the 45o diagonal. This reflects how the
searcher surely rejects lower prizes and accepts larger prizes. In our world with recall,
this classic value plot is replaced by a strictly convex value function, whose slope is
strictly rising and equals the probability of eventually recalling the best prize seen
(Figure 2). In other words, our nonstationary search model reveals a dual relationship
between values and recall rates in harmony with the stationary search model.

This best-so-far is the state variable for the searcher’s nonstationary dynamic
programming problem. Search stops when the best prize so far exceeds Weitzman’s
index, which captures future optionality. Early on, the index is high, and the searcher
chooses between the current option and further search. At some point, as the index
continues to fall, the optimal choice is to accept the current option or recall. To wit,
we prove that recall is exclusively a valuable option later in search.

In our first key contribution, we resolve the effect of a riskier prize distribution on
search behavior. While it is well-known that risk unambiguously profits the searcher,
its behavioral impact has long been ambiguous — even for stationary search, as
highlighted long ago in Mortensen (1987). For a riskier prize distribution not only
encourages more aggressive search, but also increases the weight in the favorable
prize tail. As outlined in §2, the dispersive order — a ranking neither stronger
nor weaker than the standard mean preserving spread — offers sharp behavioral
predictions for search theory. Distributions rise in this partial order if all pairs of
percentiles grow farther apart. Specifically, the expected search time is higher and
the quitting chance lower given a more dispersed idiosyncratic noise (Theorems 1
and 3). Notably, dispersion in our known factor has roughly the opposite effect:
Unless outside options are too large, the individual is more willing to initiate search
and less willing to continue searching with greater dispersion in the known factor
(Theorems 2).

The second contribution is the introduction of selection bias. For since the un-
observed known factors are correlated top order statistics, the willingness to search
or explore the next inside option signals the known factors. In principle, this might
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reverse intuitive comparative statics. For instance, one typically expects to search
less, and quit more often, when search costs jump up. But anyone who still searches
surely expects better inside options, and so is more likely to choose one. We argue
that search costs still encourage quitting (unlike an extreme case explored in §2). But
the selection effects intensify search over time, with a rising hazard rate of recalling
an earlier option and exercising a current one (Theorem 4). In another manifestation
of selection effects, the options explored earlier are recalled more often (Theorem 5).
These are the first positive general results on recall probabilities in search theory.

Our third contribution exploits our tractable treatment of the number of options.
While the infinite horizon model is the benchmark search model since McCall (1970),
here it poorly approximates a large finite number N of rank-ordered heterogeneous
options. Theorem 6 finds that the hazard rate of recalling a prior option falls in the
number of options, but need not vanish in the limit N → ∞, and ignoring the recall
option strictly hurts the searcher. The recall option is critically important when the
known factor distribution lacks a “thin tail” — as with exponential payoffs. Only
with a thin tail does the limit recall hazard rate intuitively vanish. So recall is an
important search phenomenon, and stationary search is thus a misleading benchmark.

Our fourth major contribution is to web search, where a search means clicking
on a link. For this sub-model, we assume that our two random factors are Gaussian
random variables (and not merely log-concave). The chance of consuming web sites,
possibly recalling them, increases each period. But a more accurate search engine
yields opposing effects on search duration — it features more disperse known factors
and less disperse idiosyncratic factors. Proposition 1 resolves the tradeoff, and finds
that the quitting chance rises in accuracy for expensive goods, like furniture, and falls
in accuracy for inexpensive goods like books, whereas the expected search time moves
oppositely. The probability of initiating a search — the click through rate (CTR) —
moves analogously to the expected search time. This means that its common usage
as a ranking measure (eg. Experian Hitwise) is unjustified, since it is non-monotone
in accuracy. Search duration might increase or decrease when accuracy improves.

We also can draw more normative conclusions for the web search environment.
Inspired by Blackwell’s Theorem, the user’s value of the search engine information
rises in the accuracy. In Proposition 2, we find that users with average search costs
and outside options derive the greatest value from the search engine. We then ask
how the search engine value changes in the number of options. In Proposition 3, we
find a complementarity between the web size and the search engine accuracy, and a
substitutability between the web size and search cost. In other words, as the web
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grows, the gains to a more accurate or easier to use search engine grow.
Literature. When individuals only learn the next known factor but not future

known factors, our model is formally search with learning. Yet Rosenfield and Shapiro
(1981) showed that the optimal price search strategy need not entail a cut-off rule,
since expectations jump after prize draws. Our additive reward distribution escapes
this pathological possibility. More subtly, we find that a log-concave distribution
ensures that favorable prizes encourage further search — our selection effect.

Optimal sequential search models are sometimes used in the empirical industrial
organization. Kim et al. (2010) estimates Weitzman’s model with shopping data
from Amazon, and De Los Santos et al. (2013) estimate a sequential consumer search
model with learning. We complement this literature by fully characterizing optimal
search behavior given search costs, etc. But lately, empirical work has questioned the
applicability of non-sequential search models for web search. For instance, Dinerstein
et al. (2014) apply fixed sample size search models to study a search redesign by
eBay. Earlier, De Los Santos et al. (2012) studied the online market for books and
argued that fixed sample size search models better explain the data. In §8.3, we show
that selection effects allow us to rationalize their empirical findings in our sequential
search environment — for intuitively, low prices encourage continued price search.

A new literature on equilibrium web search models explores price formation and
market efficiency. For example, Baye and Morgan (2001) explore the equilibrium
price dispersion arises in a market where buyers and sellers choose whether to adopt
a search engine. Armstrong et al. (2009) and Armstrong and Zhou (2011) study the
implications of consumer web search on sellers’ pricing strategies. Choi et al. (2016)
study an equilibrium version of our model where sellers post prices and buyers solve
an optimal sequential search problem. Finally, Eliaz and Spiegler (2016) consider a
two-sided matching problem with search frictions. They consider the optimal set of
search results that a search engine should return to maximize matching efficiency.

2 Riskier Search and Selection Effects: A Foretaste
A. Risk. Consider for simplicity McCall’s classic 1970 infinite horizon, job search
model. Naturally there is a stationary solution characterized by a reservation wage.
We explore how risk impacts search duration. With a discount factor β, wage W ∼ F ,
and search cost c, the reservation wage is w̄(c) = −c+β[F (w̄(c))w̄(c)+

∫∞
w̄(c)

wdF (w)].
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Figure 1: The left panel shows how a mean preserving spread in wages from W1 to
W2 ambiguously impacts the stopping hazard rate 1−Fi(w̄i(c)) (shaded areas): For it
pushes more mass to the tails, and raises the reservation wage w̄i(c). The right panel
depicts the selection bias in a one-stage job search problem with a random wageW and
random outside option U . The worker searches iff U < w̄(c), and accepts any job with
wage W ≥ U , i.e. above the diagonal line. As the search cost rises from c1 to c2, the
reservation wage rises from w̄(c1) to w̄(c2). With unconditional probabilities Ai and
Ri as labeled, the chance of accepting a job falls from A1/(A1+R1) to A2/(A2+R2).

Then
(1− β)w̄(c) = −c+ β

∫ ∞

w̄(c)

[1− F (w)]dw. (1)

The effect of a mean preserving spread of W on the hazard rate of stopping 1 −
F (w̄(c)) is ambiguous in general because there is more mass in the right tail of F but
w̄(c) also rises (left panel of Figure 1). We consider instead an order which globally
spreads out probability weight. If Fi is the cdf of Wi, then W2 is more dispersed
than W1 if every pair of quantiles are further apart with F2 than F1. We claim a
bifurcation: that if W grows more dispersed, then the stopping hazard rate rises for
low search costs c, and falls for all higher c. To see why, differentiate (1) to get
w̄′(c) = −[1− β + β(1− F (w̄(c)))]−1. Then

∂[1− F (w̄(c))]

∂c
= −f(w̄(c))w̄′(c) =

f(w̄(c))

1− β + β(1− F (w̄(c)))
. (2)

If W2 is more dispersed than W1, then whenever F2(w̄2(c)) = F1(w̄1(c)), we have
f2(w̄2(c)) ≤ f1(w̄1(c)). This single crossing logic yields the desired double inequality
for the stopping hazard rate [1−F2(w̄2(c))]≷ [1−F1(w̄1(c))] as c≶ c̄, for some real c̄.

B. Selection Effects. Another major thrust concerns selection effects that
emerge with heterogeneous options, when willingness to search signals a sufficiently
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promising wage distribution. For assume a random outside option payoff U with only
one search possible. So the worker searches iff U < w̄(c), and accepts any job paying
W > U . As search costs rises from c1 to c2 > c1, the reservation wage falls from w̄(c1)

to w̄(c2). As seen in Figure 1, with (W,U) independently and uniformly distributed,
the search chance then falls from A1 + R1 to A2 + R2, the chance of accepting a job
falls from A1 to A2, but this acceptance chance, conditional on search, rises from
A1/(A1 + R1) to A2/(A2 + R2). So the selection bias reverses the effect of a higher
search cost — as search cost rises, the worker searches less often and eventually
accepts a job less often. But conditional on search, each search succeeds more often.

3 Model
A searcher must exercise exactly one option from N < ∞ inside options and one
outside option. The latter has known payoff u ∈ R. The payoff of an inside option is
the sum W = X + Z of a random known factor X and a random hidden factor Z.

The factors X and Z have respective cdf’s G and H (standing for “gnostic” and
“hidden”). Their densities g and h are smooth and log-concave with full support
on R.2 We assume prospective independence, namely, X and Z are jointly independent
random variables. Ex ante probabilities are computed before X and Z are realized.

The searcher sees or learns the realized known factors x prior to search; one can
interpret it as an attribute that is unobserved by the modeler. He only learns the
realized hidden factor z when he explores the inside option. This incurs a search
cost c > 0, and takes one stage. The searcher participates if he explores any inside
option. After seeing its payoff, he may pass on an option, and explore another option.
If the searcher participates, he may search in any order until any stage n = 1, 2, . . . , N ,
and then exercise either the outside option or any inside option already explored.
Stopping search entails exercising an option, namely accepting its payoff, thereby
ending the search; this includes not participating. A searcher may exercise the current
option — called striking, in the spirit of finance. Exercising a previously passed inside
option is recalling. Exercising the outside option is called quitting.

In summary, if a searcher stops at stage n = 0, 1, 2, . . . , N , then his net payoff is
w − nc if exercises an inside option with payoff w, and u − nc if he quits. One can
capture search with no outside option by assuming an outside option payoff u=−∞.

2It is well-known (since Heckman and Honore (1990)) that log concave distributions are needed to
ensure well-behaved behavior of expectation from truncated distributions. We make this assumption,
keeping in mind that exploring an option entails deciding on the basis of a truncated distribution.
Since g is log-concave, so is 1−G, by Prekopa’s Theorem, and g/[1−G] is non-decreasing.
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4 Optimal Stopping Characterization
When the known factor has a degenerate distribution, say X = 0, this model captures
finite stage search from a fixed distribution; the searcher employs a constant cutoff,
and only uses the recall option if he reaches the last period. When the hidden factor
is constant, say Z ≡ z̄, the searcher perfectly sorts options, and stops at the first —
to wit, no recall. But when X and Z have non-degenerate distributions, the searcher
confronts a nontrivial nonstationary search problem, and sometimes recalls an option.

Indeed, rank order all options by realized known factors: x1 ≥ x2 ≥ · · · ≥ xN . We
argue that the searcher optimally explores options in this order. So if their realized
payoffs are w1, w2, . . . , wN , then the dynamic programming state variable is the best
option so far: Ω0 = u and Ωn = max(u,w1, w2, . . . , wn) for stages n = 1, 2, . . . , N .

Let Fn denote the distribution of the random payoff Wn = xn+Zn, corresponding
to the option with known factor Xn = xn. Its cdf is thus Fn(w) = H(w − xn). Next,
as in Weitzman (1979), implicitly define n reservation prizes {w̄1, w̄2, . . . , w̄N} for the
options:

w̄n = −c+ w̄nFn(w̄n) +
∫∞
w̄n
wdFn(w). (3)

Integration by parts yields c =
∫∞
w̄n

1 − Fn(z)dz. As xn ≥ xn+1, the distributions Fn

stochastically fall in n, or Fn+1 is FOSD below Fn. Then the reservation prizes fall
each stage, namely, w̄1 ≥ w̄2 ≥ · · · ≥ w̄N . By Weitzman (1979), one explores options
in order of reservation prizes, and thus known factors: One stops at stage-n if the
best-so-far option Ωn exceeds the reservation prize w̄n+1 of exploring the next stage.

Lemma 1 The searcher optimally explores options in order n = 1, 2, . . ., and stops
searching at the first stage n with Ωn ≥ w̄n+1, accepting the best option so far.

The value function Vn(Ωn) at stage n is the maximum payoff assuming optimal
future behavior when the best option so far is Ωn. Clearly VN(ΩN) = ΩN . For any
n<N , backward induction logic recursively yields value functions Vn−1, . . . , V1 by:

Vn(Ωn) = max
{
Ωn,−c+ Vn+1(Ωn)Fn+1(Ωn) +

∫∞
Ωn
Vn+1(z)dFn+1(z)

}
. (4)

Subtly, this recursion assumes that the searcher foresees all future known factors.
But since the reservation prize w̄n+1 depends only on Fn+1 and not Fn+2, Fn+3, . . . in
(3), the searcher can always optimally stop at stage n apprised only of the next known
factor xn+1. This reflects the one-stage look-ahead property of optimal search.3

3We appealed to Weitzman (1979). But a proof by the one-stage look-ahead property works, as
the search problem is monotone, i.e. if a searcher stops at stage n then he also stops at stage n+ 1.
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Figure 2: Value Function and Recall Chances. At left is the value Vn at stage n
as a function of the best inside option so far w = max(w1, . . . , wn). Payoffs w ≥ w̄n+1

are exercised. Payoffs w in [u, w̄n+1) are rejected, but may eventually be recalled.
Payoffs w < u are forever rejected. So Vn is flat on (−∞, u), then increasing and
strictly convex on [u, w̄n+1), then the 45o diagonal. Its slope is the chance of eventually
exercising the current best-so-far payoff w, seen at right for w̄n+3>u>w̄i+4.

Lemma 2 The stage n = 1, . . . , N value function Vn is convex, and differentiable
except at Ω = w̄N < · · · < w̄n+1, where V ′

n(Ω+) > V ′
n(Ω−). The slope V ′

n increases
on [w̄n, w̄n+1], and is the chance of eventually exercising the stage n best option so
far Ωn. At stage k = 2, . . . , N , an option w is recalled iff w ∈ [w̄k+1, w̄k) and Ωk = w.

Proof by Backward Induction: All claims hold if n=N : VN(Ω)=Ω for Ω≥ w̄N−1 as the
best option ΩN is exercised. Then V ′

N(Ω)=1. Posit all claims at stage n+ 1. Search
stops at stage n if Ωn ≥ w̄n+1. By (4), Vn(Ω) = Ω on [w̄n+1,∞) and so V ′

n(Ω) = 1,
i.e., the stopping chance. One searches at stage n + 1 if Ωn<w̄n+1. Then V ′

n(Ωn)=

Fn+1(Ωn)V
′
n+1(Ωn) by (4). Since V ′

n+1 jumps up at w̄N< · · ·<w̄n+2, so does V ′
n. Now,

1 = V ′
n(w̄n+1+) > V ′

n(w̄n+1−) = Fn+1(w̄n+1)V
′
n+1(w̄n+1−) as V ′

n+1(w̄n+1−) < 1 by
assumption, and Fn+1(w̄n+1) < 1. Then V ′

n exists except at jumps w̄N < · · · < w̄n+1.
If Ωn < w̄n+1, then the searcher enters stage n + 1 and will recall Ωn with chance
V ′
n(Ωn) = Fn+1(Ωn)V

′
n+1(Ωn). As Fn+1 has full support and Vn+1 is convex, Fn+1V

′
n+1

rises, and Fn+1(Ωn) < 1. So Vn is strictly convex and V ′
n(Ω) < 1 for all Ω < w̄n+1.

The last claim is true because the searcher enters stage k with best-so-far w iff w =

Ωk−1 < w̄k, and then he recalls w iff w = Ωk ≥ w̄k+1 by Lemma 1. □
In stationary wage search, the value function is piecewise linear — first constant if

the current wage lies below the reservation wage, and then the 45 degree line. As seen
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in Figure 2, the value Vn in our model is increasing and strictly convex on an interval
[u, w̄n+1]. The value increases in this interval since the best-so-far acts as insurance:
The searcher recalls and exercises this option with positive probability. The value is
strictly convex because a higher fallback option is recalled with a higher chance.

Naturally, when search is more costly, there is a higher chance that one exercises
the current best-so-far option immediately or recalls it later. As a result, the value
function in Figure 2 grows steeper as the search cost c rises (§A in Online Appendix).

In our nonstationary model, recall acts as insurance: The searcher is strictly more
ambitious than is justified by his continuous payoffs — i.e. his reservation prize w̄n+1

exceeds the continuation value Vn — since he can recall past options. Without recall,
reservation prizes agree with the continuation values, as in stationary wage search.

Capturing the benefits of the idiosyncratic noise Z, the search optionality value
ζ(c) implicitly solves:

c =

∫ ∞

ζ(c)

[1−H(z)]dz. (5)

This is the Bellman equation for the reservation wage in stationary wage search (with
X ≡ 0). It falls in the search cost c, and rises if Z incurs a mean-preserving spread.

Lemma 3 (Optimal Search) The stage n reservation prize equals w̄n = xn + ζ(c).

This expression follows from integrating the tail probability (3) by parts, using (5):4

c =

∫ ∞

w̄n

[1− Fn(s)]ds =

∫ ∞

w̄n

[1−H(r − xn)]dr =

∫ ∞

w̄n−xn

[1−H(z)]dz.

The searcher has three courses of action, depicted in Figure 3. By Lemmas 1
and 3, he strikes if xn + zn ≥ w̄n+1 and xn + zn ≥ Ωn−1, passes if w̄n+1 > xn + zn

and w̄n+1 > Ωn−1, and quits or recalls if Ωn−1 > xn + zn and Ωn−1 ≥ w̄n+1. Since the
best-so-far Ωn increases in n, while the future value w̄n falls in n, by Lemma 2, we
might end up with Ωn−1 ≥ w̄n+1, if we do not start there. So early on, the searcher’s
choice is strike or pass, since the future is brighter than the past, or w̄n+1 > Ωn−1.
But eventually, the choice is either strike or quit / recall, as Ωn−1 ≥ w̄n+1.

In the spirit of Weitzman (1979), one can solve the n option search problem by
solving a sequence of two option problems. Assume two random inside options A

4The additive expression relies on no discounting. While this assumption can be justified as
natural for consumer search, since this typically lasts for a short period of time, this additive structure
does not arise with a discount factor β < 1. For then (3) becomes w̄n = β[−c + w̄nFn(w̄n) +∫∞
w̄n
wdFn(w)]. So if w̄n = xn + ζ(c, xn), then ζ solves [xn + ζ](1 − β)/β + c =

∫∞
ζ

[1 −H(s)]ds. If
β ∈ (0, 1), then ζ(c, xn) falls in xn, invalidating the additive expression in Lemma 3.

9



6

-

Stop Explore

Strike

Pass

xn + zn = w̄n+1

xn + zn = Ωn−1

zn

Ωn−1 − ζ(c) xn

6

-

Stop Explore

Strike

Recall or
Quit

xn + zn = Ωn−1

xn + zn = w̄n+1

zn

Ωn−1 − ζ(c) xn

Figure 3: Optimal Stopping Early and Late. We plot behavior as a function
of the known and idiosyncratic factors, x and z. Early on, when w̄n+1 > Ωn−1, the
searcher always decides between strike and pass (left). But we eventually transition to
Ωn−1 ≥ w̄n+1, whereupon the decision margin shifts to strike or recall / quit (right).

and B and no outside option. We say that A delays B if w̄A > w̄B and wA < w̄B.
For then the searcher first explores A and finds that its payoff wA is below w̄B, and
so then explores option B. The delay chance δ(x , c) is the probability that an option
A with random known factor X delays an option B with a fixed known factor x . So:

δ(x , c) ≡ P ({X > x } ∩ {X + Z < x + ζ(c)}) =
∫ ∞

x

H (x + ζ(c)− r) g(r)dr. (6)

The attraction π(x , c) is the probability that option B with fixed known factor x is
explored before option A with random known factor X , i.e., w̄B>w̄A or A delays B:

π(x , c) ≡ P ({X < x } ∪ {{X ≥ x } ∩ {X + Z < x + ζ(c)}}) = G(x ) + δ(x , c). (7)

These two probabilities are key. For assume only two inside options A and B, for
simplicity. Then the probability that both options are explored — namely, the chance
of the event that A delays B or that B delays A — is the sum of the (expected) delay
chances. Equally well, the expected number of options explored is the sum of the
chances that A and B are explored, namely, the sum of their (expected) attractions.

We next explore how predictions of our model change with its basic parameters.
In §5, we discover a new and general way that risk impacts search duration. In §6, we
characterize how search changes over time. And in §7, we ask whether the stationary
search benchmark model corresponds to the limit with infinitely many options.
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5 Prize Dispersion and Sequential Search
Now we derive the impact of a more dispersed reward distribution on search duration.
We find that the effect of more dispersed known and idiosyncratic factors is opposite.5

5.1 Dispersion Impacts Search Duration and Participation

We develop a formula for the survival chance σn, namely, the probability that search
lasts for at least n stages. Most easily, σ0 = 1 > 0 = σN+1, while σ1 is the participation
chance, i.e., the ex ante probability of initiating the search. Now, consider any σn, for
n = 1, . . . , N . This is the chance that (a) n−1 options delay option n, namely X > x

and X +Z < x + ζ(c), and (b) the other N −n options have a known factor below x ,
across all known factors x > u− ζ(c). Events (a) and (b) have probabilities δ(x , c)n−1

and G(x )N−n. Since each option is the nth best overall with the same ex-ante chance,
by prospective independence, integrating the binomial probability of events (a) and
(b) over all possible known factors x and all n options yields the survival chance
formula:

σn = N

(
N − 1

n− 1

)∫ ∞

u−ζ(c)

δ(x , c)n−1G(x )N−ng(x )dx . (8)

The survival chance σn falls in the search cost c since the cutoff known factor u−ζ(c)
rises in c by (5), and the delay chance δ(x , c) falls in c by (5)–(6). More easily, the
survival chance σn falls in the outside option payoff u as u− ζ(c) rises in u.

Express the duration — the expected search time until stopping — as τ =∑N
n=1 σn. The survival chances and so duration fall in the outside option payoff

u and search cost c. By (8) and the attraction formula π(x , c) = G(x )+δ(x , c) in (7):

τ=N

∫ ∞

u−ζ(c)

N∑
n=1

(
N − 1

n− 1

)
δ(x , c)n−1G(x )N−ng(x )dx =N

∫ ∞

u−ζ(c)

π(x , c)N−1g(x )dx . (9)

Using this search duration formula, we now explore the ambivalent impact of a
riskier prize distribution: For the searcher grows more ambitious, but there is more
weight in each tail.6 To analyze risk here, assume first standard stationary search with

5Ganuza and Penalva (2010) use the dispersive order to study information disclosure in auctions.
Zhou (2016) and Choi et al. (2016) use it to study pricing in discrete choice models. In their
paper on notions of risk, Chateauneuf et al. (2004) include an example of stationary search with
no discounting, in which duration rises if the reward distribution grows location independent riskier
(Jewitt (1989)).

6A left or right tail of the cdf has weight below 0.5. Eg. Let P (Z1 = 1) = P (Z1 = 2) = P (Z1 =
3) = 1/3. Let c = 1/4. So ζ1(c) = 3 by (5). The stopping hazard rate is P (Z1 ≥ 3) = 1/3. Let
the hidden factor have a MPS so that P (Z2 = 1) = P (Z2 = 3) = 1/2. Now, ζ2(c) = 3 by (5), and
P (Z2 ≥ 3) = 1/2. The stopping hazard rate rises as Z grows riskier. But if c = 1/2, then ζ1(c) = 2
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no outside option, so that X ≡ 0, n = ∞, and u = −∞. A mean-preserving spread of
Z raises the search optionality value ζ(c), by (5), but raises the weight in the right tail.
To resolve the net effect on the stopping hazard rate S = 1−H(ζ(c)), change variables
in the standard search Bellman equation (5) from the prize z to its quantile a, via
the quantile function z = H−1(a). Since dz=dH−1(a)=[∂H−1(a)/∂a]da, we have:∫ 1

1−S
(1− a)

∂H−1(a)

∂a
da =

∫ ∞

ζ(c)

[1−H(z)]dz = c.

Given cdf’s H1 and H2, the associated stopping hazard rates are ranked S2 < S1 if the
quantile function H−1

2 is globally steeper than H−1
1 , i.e., ∂H−1

2 (a)/∂a > ∂H−1
1 (a)/∂a

at all quantile levels a ∈ (0, 1). A sufficient condition for this inequality is that
h2(H

−1
2 (a)) ≤ h1(H

−1
1 (a)) for all a ∈ (0, 1), where hn = H ′

n is the density of Zn, for
n = 1, 2 — namely, that Z2 is more dispersed than Z1 (written Z2 ⪰disp Z1).

The dispersive order suffices to rank stopping hazard rates in the stationary world
in §2. But in our nonstationary model, a stronger ranking is needed. The random
variable Z2 is a mean-enhancing dispersion of Z1 if Z2 ⪰disp Z1 and E[Z2] ≥ E[Z1].
It is a mean-preserving dispersion if E[Z2] = E[Z1]. This is stronger than saying that
H2 is a mean preserving spread of H1. For since H−1

2 is steeper than H−1
1 , while H1

and H2 have the same mean, H1 single crosses H2 (see Diamond and Stiglitz (1974)).

Theorem 1 (Hidden Factors) A mean enhancing dispersion in Z raises survival
chances σn, for n = 1, 2, . . ., and so also the participation chance and search duration.

Next, consider the known factor X . By Lemma 3, a searcher participates for a
sufficiently inviting best option: X1 > u− ζ(c). Naturally, if the random variable X
stochastically rises (falls), then so does the best known factor X1, and the participa-
tion chance σ1 rises (falls). Next, assume instead that X grows more dispersed but
neither rises or falls stochastically. Its impact on σ1 depends on the outside option.
Intuitively, if u is large, then u − ζ(c) exceeds the median of X1. As X grows more
dispersed, all quantiles of X1 push apart, inflating quantiles above the median, and so
raising the chance σ1 that X1 > u− ζ(c). But if u is small, then u− ζ(c) is below the
median of X1, and the effect of dispersion reverses: It shrinks the bottom quantiles
of X , raising the chance of X1 ≤ u− ζ(c), depressing σ1. Part (a) summarizes this:

Theorem 2 (Known Factors) (a) If X grows more dispersed, but neither rises nor
falls stochastically, then the participation chance σ1 falls for low outside options u,

and P (Z1 ≥ 2) = 2/3, while ζ2(c) = 3 and P (Z2 ≥ 3) = 1/2. The stopping hazard rate drops.
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and rises for all higher outside options. (b) If X grows more dispersed and falls
stochastically, then every survival chance σn falls, as does the search duration.

To understand part (b), note that dispersion in the known factor X has a different
impact on the survival chance σn, and so search duration, than the participation rate.
For the searcher stops sooner if its order statistics (Xn) drop more rapidly. Since all
gaps between order statistics Xn − Xn+1 increase when X grows more disperse, this
depresses the survival chances σn, ceteris paribus. But inasmuch as dispersion raises
participation (Theorem 2(a)), this by itself increases the survival chances. Part (b)

resolves the ambivalence, by assuming that X stochastically falls; this eliminates the
participation effect, and so the survival chance unambiguously falls with X dispersion.

5.2 Dispersion Impacts Quitting Chances
The quitting chance is the probability q that a searcher either does not participate, or
does, but eventually exercises his outside option. Conversely, he eventually elects an
inside option with chance 1− q. For instance, in online product search, after using a
shopping search engine, a searcher eventually buys with chance 1− q. In a stationary
job search environment, if one is willing to search, then one never quits, and so q = 0.

The searcher explores option j only if he does not quit before, and so if Xj+ζ(c) ≡
w̄j > u, by Lemma 3. So one explores option j only if Xj > u− ζ(c), which is thus a
cutoff known factor. Option j is dominated (by the outside option) if Xj ≤ u− ζ(c).

In a world with just one inside option, the disappointment chance is the probability
that it is explored before the outside option is exercised. By Lemma 3, this probability
equals the delay chance δ(u − ζ(c), c), namely, for a hyothetical inside option with
known factor payoff u − ζ(c). The quitting chance in a one-stage problem is the
disappointment chance plus the nonparticipation chance, i.e., π(u− ζ(c), c) by (7).

Let qn be the stage n quitting chance, namely: (1) the first n options are explored
and never exercised: Xj > u− ζ(c) and Xj +Zj < u, ∀j ≤ i, and (2) later options are
dominated: Xj ≤ u − ζ(c),∀j > i. Since an option is explored and never exercised
with chance δ(u− ζ(c), c), by prospective independence, the n events have chance:

qn =

(
N

n

)
δ(u− ζ(c), c)nG(u− ζ(c))N−n. (10)

Given the quitting chance q = ΣN
n=0qn, equations (7) and (10) yield a simple formula

q = ΣN
n=0qn = [δ(u− ζ(c)) +G(u− ζ(c))]n = π(u− ζ(c), c)n. (11)
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The quitting chance q therefore geometrically falls in the number of options n.

Theorem 3 (Hidden Factors) The quitting chance q rises if Z incurs a mean pre-
serving dispersion, for low outside options u, and falls for all higher outside options u.

This corresponds to the effect of dispersion on the non-participation chance 1 − σ1

(Theorem 2(a)). A single option problem affords some quick intuition. For then,
since the searcher quits if he does not participate (X + ζ(c) < u) or if he recalls the
outside option (X + Z < u), one can rewrite the quitting chance in (11) with one
option as a cdf of the random variable min(X + ζ(c),X + Z) ≡ X + min(Z, ζ(c)),
namely:

q = q0 + q1 = π(u− ζ(c), c) = P (X +min(Z, ζ(c)) < u). (12)

Easily, the quitting chance falls in the outside option u and in the search cost c since
ζ ′(c) < 0. A mean preserving dispersion of the hidden factor Z inflates the search
optionality value ζ(c). This stochastically raises X+min(Z, ζ(c)), and so shrinks (12).
Moreover, the top quantiles of Z rise and the bottom quantiles fall. This is equally
true of X + min(Z, ζ(c)). Hence, as Z grows more dispersed, the quitting chance q
in (12) rises if u is small, and falls for all large enough u. The result asserts more
strongly that this comparative static is single crossing in u.

As the known factor X grows more disperse, X +min(Z, ζ(c)) might not, and its
effect on q is unclear. Easily, the quitting chance q falls as X or Z stochastically rises.

6 Selection Effects and Hazard Rates Over Time
We now see how selection effects arise with ranked known factors, and explore their
counterintuitive consequences. Let Sn,Qn, and En be the respective hazard rates of
stopping, quitting, and exercising an inside option, as computed ex ante, conditional
on entering stage n. Since the searcher either quits or exercises an inside option after
stopping, Sn = Qn+En. Next, if Kn and Rn are the respective hazard rates of striking
the current option or recalling an explored option at stage-n, then En = Kn +Rn.

Our selection effects arise because search choices signal information about known
factors: For one is more willing to explore option n when search costs rise with a
higher known factor Xn, and so higher later factors Xn+1, etc.

Lemma 4 Conditional on entering stage n, the factor Xn stochastically rises in the
number N of options, the search cost c, and the outside option u, and falls in n.
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We next explore how this selection effect impacts search hazard rates. Not only does
the current known factor Xn increase in the cost c, but it rises more than Xn+1,
since X has a log-concave distribution. So the gap between known factors Xn −Xn+1

widens, and the survival probability σn falls (as noted before §5.2). More strongly,
we prove in §B.2 that σn+1 falls proportionately less than σn, raising the stopping
hazard rate Sn ≡ 1 − σn+1/σn. So one stops sooner with a higher search cost c, but
this is more subtle with selection effects.7

Naturally, future options stochastically worsen each stage, since the known factors
fall, while past inside fallback options grow more numerous. But opposing this is a
selection effect: Conditional on arriving at a later stage, the fallback inside options
are worse, and the outside option is more inviting. We show that the first effect
dominates the second selection effect for Rn and En, by log-concavity of G and H.

Theorem 4 (Search Intensifies) The recall and inside option exercise hazard rates,
Rn and En, rise in n. The quitting hazard rate Qn rises for small search costs c > 0.

For example, assume X and Z are Gaussian random variables with distribution
N(0, α2) and N(0, 1 − α2) respectively. If (α, c, u, n) = (0.4, 0.01, 1, 7), then Kn is
U-shaped in n. If (α, c, u, n) = (0.4, 0.1−10, 4, 5) then Qn drops from stage 1 to stage
2 and then rises in n.

If (α, c, u, n) = (0.4, 1.2,−0.1, 7), the hazard rate of quitting falls in n when c or
u are very large.

So the probability of exercising any option, or any prior option, rises over time.
While the recall probability rises, we now ask which option one recalls. While earlier
options have larger known factors, they have been passed over more often; this offers
more damning selection evidence of their hidden factors. Nevertheless:

Theorem 5 (Older Options are Recalled More) If one explores option n, then
the chance of recalling any prior option j < n falls in j, for all n = 1, 2, . . . , N .

Proof: Since the searcher explores option n, the payoff of any prior option is less
than the cutoff w̄n = xn + ζ(c), or it would have been exercised earlier. By the
Markov property of order statistics,8 the joint distribution of the known and hidden

7Selection effects also surprisingly affect the eventual quitting chance q̄ ≡ (q − q0)/(1 − q0),
conditional on search. Intuitively, the quitting chance q rises in c (mentioned after (12)). But
conditional on search, q̄ falls in the search cost c with a small number of options N (Claim B.2).

8Theorem 2.4.1 (The Markov Property) in Arnold et al. (1992): Let X1:n ≥ X2:n ≥ · · · ≥ Xn:n be
order statistics of a random sample X1, X2, . . . , Xn from a population with cdf F and pdf f . Then
given Xi:n = xi, the distribution of Xj:n, for j < i, is the same as the distribution of the j-th order
statistic of an (n− i) sample from a population with distribution F truncated at the left by xi.
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factors for the first n− 1 options equals that of n− 1 i.i.d. draws (X ,Z) from (G,H),
conditional on the known ranking X > xn and the selection effect X +Z < xn + ζ(c).
If X = x > xn is the realized known factor of any prior option, its payoff W ≡ x +Z
has cdf

P (W < w|W < xn + ζ(c)) =
H(w − x )

H(xn + ζ(c)− x )
.

Since w < xn + ζ(c), this falls in x by log-concavity of H, and W stochastically
increases in x . Hence, the payoffs of earlier options are stochastically ranked. Because
this ordering holds for all Xn realizations, it is also holds unconditional on Xn. □

7 Is Stationary Search a Good Benchmark?
We next explore how well the infinite horizon model approximates the actual long
finite horizons that exist. In a stationary search model, one never quits or recalls
— hazard rates are constant at Q = R = 0 — while striking occurs at a constant
hazard rate K = 1−H(ζ(c)). With a finite number N of options, the quitting hazard
rate Qn falls in N . For upon entering stage n, the known factor Xn rises in N , by
Lemma 4. Given correlated order statistics, both fallback and future options are more
attractive too, deterring quitting. But the decision to quit also reflects the expected
improvement in future options. Intuitively, the gaps Xn − Xn+1 between consecutive
known factors stochastically shrink as N increases. This spurs search, depressing
hazard rates Kn, Rn and Qn as N grows.

Next, consider the limiting behavior as N explodes. One might guess that the
predictions resemble those of a stationary search model since the gaps between known
factors Xn vanish — i.e. the known factors are nearly constant. This intuitive guess
is wrong: For the limit gaps Xn−Xn+1 depend on the right tail of the distribution G.

Since the hazard rate g/[1 − G] is non-decreasing, limx ↑G−1(1) g(x )/[1 − G(x )]

exists and is positive. If limx ↑G−1(1) g(x )/[1 − G(x )] = ∞, G has a thin tail9 — e.g.
the uniform and Gaussian distributions have a thin tail and the exponential does not.
This definition affords us a sharp characterization of limit search behavior:

Theorem 6 (Hazard Rates and Number of Options) The hazard rates Qn, Rn

and Kn of quitting, recalling, and striking in any stage n all fall in N . As N → ∞, for
9Absent the thin tail of G, the right tail vanishes exponentially fast as x explodes (Claim C.1).

Also, the first order statistic of n i.i.d. draws from G is approximately Gumbel distributed for large n.
This is a well-known result in the extreme value theory: G is in the domain of attraction of a Gumbel
type general extreme value distribution. See Leadbetter et al. (2012) for a comprehensive discussion.
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each stage n, Qn vanishes, Rn vanishes if and only if G has a thin tail, and Kn tends
to 1−H(ζ(c))∈(0, 1) if G has a thin tail, and otherwise has a strictly larger limit.

Naturally, as the number of options N explodes, the searcher never quits and
strikes at a fixed rate. But the limit recall hazard rate is positive if and only if the
distribution G of known factors does not have a thin tail. In fact, to deny the recall
option to the searcher strictly lowers his welfare in the limit N ↑ ∞.10 Moreoever,
striking hazard rates should intuitively just reflect the hidden noise in the limit. But
absent a thin tail, one strikes in the limit more often than justified by hidden noise —
since the gaps between consecutive known factors do not vanish, and this provides an
additional incentive to strike. All told, without thin tails, the infinite horizon model
surprisingly offers a misleading approximation of large finite horizon search behavior.

Theorem 6 also implies that search duration rises with more options. For the
striking hazard rate Sn ≡ 1 − σn+1/σn yields the survival chance formula σn =

σ1Π
i
j=1(1 − Sj). This rises in N , as σ1 = P (X1 > u − ζ(c)) rises in N by Lemma 4,

and Sj≡Qj+Ej falls in N , by Theorem 6. So search duration τ≡
∑N

i=0 σn rises in N .

8 Application: Web Search
We now specialize our environment of known and idiosyncratic factors, to create a
simple dynamic model web search. For we imagine that the search engine extracts
known factors from web site payoffs, and uses them to pre-rank options for the user.

8.1 An Accuracy Model

A user can consume at most one web site from n options. Each entails a clicking cost
c>0. Not all is lost if the user does not find the good: The outside option is u>−∞.

A search engine helps the user by sorting web sites according to his preference.
After the user enters the search query, the search engine estimates his web site payoffs.
The search engine then sorts the web sites in descending order of their expected
payoffs, and posts a list of hyperlinks and short descriptions (revealing known factors).
Seeing this list, the user clicks them sequentially. By Lemma 1, he need only learn the
next known factor after each click. So the search engine orders the options exactly as
the searcher would rank order them, thinking of these estimates as known factors.

10Before learning the known factor Xn, given G,H continuous, the searcher thinks the reservation
prize w̄n+1 in Lemma 3 almost surely (a.s.) differs from the best-so-far Ωn, and so the searcher is
a.s. not indifferent about stopping, by Lemma 1, and a.s. strictly prefers one option to all others.
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Whereas so far we’ve assumed that the searcher rank-orders the options himself,
here the search engine does it. We normalize the means of X and Z to zero, by
adjusting the outside option. Greater accuracy means a lower hidden variance E[X 2]

and a greater known variance E[Z2], while leaving unchanged the distribution X +Z.
Write X = αX, and Z = βZ, where X and Z each have unit variance, and are

independent by prospective independence. But since W ≡ X + Z ≡ αX + βZ has a
fixed distribution, its variance α2 + β2 is constant. Normalizing α2 + β2 = 1, we have
β =

√
1− α2. Hence:

W = αX +
√
1− α2Z. (13)

Accuracy α transfers weight from the hidden to the known factor, for given X,Z.
In fact, the distributions of W,X and Z coincide, since W = Z when α = 0 and
W = X when α = 1. Since equation (13) holds for all α ∈ [0, 1], their distribution
is stable.11 But the log-concavity of X ,Z implies a finite variance. Finally, W,X
and Z are each Gaussian N(0, 1), as that is the only stable distribution with a finite
variance.12 As this setting is a special case of our original model, all earlier results
in §4–§6 apply. Because scaling a distribution increases its dispersion,13 the dispersion
of the known factor rises and of the hidden factor falls as the accuracy α rises.

Aside from web search, our Gaussian accuracy model admits an interpretation
in which greater accuracy arises from more precise Bayesian signals. Assume that
the payoffs of inside options are Gaussian W ∼ N(0, 1). Before searching, he ob-
serves a signal X ∼ N(αw,

√
1− α2) for each option with true value w — say, a

job advertisement. Upon seeing X = x, the searcher updates his posterior beliefs to
W ∼ N(αx,

√
1− α2).14 Since the noise in his estimate Z = (W − αx)/

√
1− α2 is

also N(0, 1), and is independent of X, the formula (13) arises with X,Z ∼ N(0, 1).
Optimal stopping is governed by our model, where the optionality ζ(α, c) solves

a specialization of (5):
c =

∫ ∞

ζ(α,c)

[
1− Φ

(
s√

1− α2

)]
ds. (14)

where Φ is the Gaussian cdf. One participates in search iff X1 > ℓ(α, u, c), where
11By Definition 1.1 in Nolan (2009), a random variable X is stable if, for any independent copies

X1 and X2, and a, b > 0, we have aX1+ bX2 equal cX+d in distribution, for some c > 0 and d ∈ R.
12Every stable distribution has an index of stability α ∈ (0, 2]. Nolan (2009) states that for a

random variable X with a stable distribution, E[|X|2] < ∞ if and only if α = 2 (p. 15). When
α = 2, the set of stable distributions is equivalent to the Gaussian family.

13For any continuous random variable X and Y , X ⪰disp Y iff X =st ψ(Y ) for some increasing ψ
which satisfies ψ(y′)− ψ(y) ≥ y′ − y whenever y′ ≥ y by equation (3.B.13) in SS.

14Since X/α has mean w and precision α2/(1−α2), the posterior precision of W is 1+α2/(1−α2) =
1/(1− α2) and its posterior mean is therefore [(x/α)α2/(1− α2)]/[1 + α2/(1− α2)] = αx.
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ℓ(α, u, c) ≡ u− ζ(α, c)

α
. (15)

Lemma 5 (Optionality) The search optionality value ζ(α, c) falls in accuracy α,
when ζ(0, c) > −c = ζ(1, c). Also, ζ(α, c)/

√
1− α2 monotonically falls in α to −∞.

The extreme cases are easy: The limit when accuracy vanishes α = 0 is stationary
search. Here, one searches if the best so far is less than the reservation value, i.e.,
ζ(0, c). With perfect accuracy α = 1, noise and thus search optionality vanish. The
model’s richness arises from realistic intermediate accuracy levels α ∈ (0, 1).

A common ranking tool of search engines is the click through rate (CTR) — the
chance the user clicks on (“explores”) any web site after posting a query. This is our
participation chance σ1. By Theorems 1 and 2, for low outside option payoffs u, the
CTR increases with a mean-preserving dispersion in the hidden factor and falls with
a mean-preserving dispersion in the known factor. A similar tradeoff emerges for the
search duration τ . In our web search model, the known factor grows more dispersed
and the hidden factor less so as accuracy rises. So the effect of greater accuracy on
the CTR or search duration is unclear. Our first web search result resolves this doubt.

Proposition 1 (Changing Accuracy) The quitting chance q rises in accuracy α

for low outside option payoffs u < ζ(α, c), and otherwise falls in α. The CTR and the
search duration τ rise in accuracy α when u is high enough, and fall for all lower u.

For intuition, assume no outside option, so that the searcher never quits. As
accuracy rises, the optionality value ζ(α, c) of exploring inside options falls, and one
stops sooner. But with a good outside option, the chance that αXi > u− ζ(α, c) rises
in accuracy: the searcher clicks through more, and the expected search time rises.

Since search engines constantly update their search algorithms, it is important
to know whether a new algorithm enhances the user’s payoff. By Proposition 1, the
CTR, the expected search time, and the quitting chance are each non-monotone in
search engine accuracy (Figure 4). As a result, using these statistics to measure
search engine accuracy is unjustified. Since we show below that the searcher’s welfare
is increasing in accuracy, these statistics are also invalid welfare measures.

Proposition 1 crucially identifies a novel potential conflict of interest between online
shopping sites and consumers. Suppose that the goal of a shopping search engine is to
maximize the sale chance 1− q. This may be inconsistent with maximizing accuracy.
For by Proposition 1, as accuracy rises, the quitting chance q rises, and therefore the
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Figure 4: Both panels depict Proposition 1. At left, the slope of the quitting chance
in α vanishes for the search optionality ζ(α, c) = u. At right, the expected search time
falls/rises in α below/above the curve. The simulated graphs assume c = 0.3, n = 6.

sales chance falls, provided u < ζ(1, c) (Figure 4). Consequently,15 when the price of
the good is high (relative to the outside option), a shopping web site perversely earns
higher profits from a less accurate search engine. Conversely, maximizing accuracy is
sales-maximizing for low priced goods, since q falls in α for outside options u > ζ(0, c).

8.2 The Value of a Search Engine

Let V(α, c, u) be the (net) pre-query value, namely, the prospectively expected payoff
of the user whose search engine has accuracy α. This is the expectation of the initial
value V0(u) in recursion (4), over possible known factors X1,X2, . . . ,XN .

Let αX∗ and
√
1− α2Z∗ be the random known and hidden factors for the con-

sumed web site, assuming he exercises one. Then

V(α, c, u) = qu+ (1− q)E[αX∗ +
√
1− α2Z∗]− τc.

By standard Envelope Theorem logic, two value derivatives are16

∂V(α, c, u)
∂c

= −τ and ∂V(α, c, u)
∂u

= q. (16)

As noted after (12), the quitting chance q increases in the outside option. So Vu(α, c, u)

increases in u, and V is strictly convex in u. Also, V is strictly convex in c.
Inspired by our Bayesian informational story in §8.1, we define the value of the

search engine analogous to the value of information — namely, the gain over purely
random search, i.e., Π(α, c, u) ≡ V(α, c, u) − V(0, c, u). By Blackwell’s Theorem,17

15For our applications here and in §8.3, the outside option u is fixed, say proxied by the value of
time. Then high and low priced goods correspond to high and low prices relative to u.

16By Lemma 2, V0(u) is differentiable in u except at the cutoffs w̄n = xn + ζ(c). Since the
distribution of known factors Xn is continuous, the pre-query value V = E[V0(u)] is differentiable
in u. By a similar argument, V is differentiable in c (see §A in Online Appendix for details).

17Our dynamic strategy can be formulated at time zero as a set of contingent thresholds.
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Figure 5: We plot, for accuracies α ∈ {0.3, 0.5, 0.7}, how the (numerically-computed)
search engine value is single-peaked in outside option u (left) or clicking cost c (right).
The value is strictly positive as u→ −∞ and vanishes as u→ ∞, or as c→ ±∞.

the value of the search engine is monotone in α.18 But intuitively, the user should
strictly profit from a better search engine, or Π(α, c, u) should strictly rise in α. Also:

Proposition 2 (Changes in the Value) Π(α, c, u) is single-peaked in c > 0 and u.
It vanishes as c→ 0, c→ ∞, or u→ ∞, and is boundedly positive as u→ −∞.

By Proposition 1, the search engine offers a positive gain to a web searcher with
no outside option. Also, the value of a search engine is intuitively single-peaked in
the c. For if c = 0, a user always clicks on all web sites and a search engine is useless.
But if c = ∞, no web site is clicked, and a search engine is once again useless.

With no outside option (u = −∞), a search engine reduces clicks and so helps. As
u increases, the search engine helps on intensive and extensive margins — it not only
reduces the number of clicks, but also helps the user decide whether to click-through
or not; therefore, the value of search engine initially is increasing in u. But for very
large u, the user will not click on any web site, and the search engine is useless.

Search engine accuracy and usability −c have much improved since 2000, and the
number of web sites has exploded. Both trends are explained by two cross partials:

Proposition 3 (Search Engine Synergies) Accuracy α and usability −c are both
complements to the number of web sites, namely ∂2V/∂n∂α ≥ 0 and ∂2V/∂n∂c ≤ 0.

These synergies have a feedback effect, for more accurate and useable search engine
technology has surely encouraged the creation of more web sites.

18Given αH , one can create αL < αH , by adding zero mean Gaussian noise with variance α2
H −α2

L

to the known factors, raising the hidden factor variance to (1− α2
H) + (α2

H − α2
L)=1− α2

L.
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8.3 Is Web Search Really Sequential?

Our model exhibits a known property of search and learning models, that encouraging
search outcomes need not reduce search duration. Rosenfield and Shapiro (1981)
showed that one need not even employ a cut-off strategy — for expectations rise after
high draws. When W1 is larger, so too are X1, . . . ,Xn, and expected search duration
rises. Our log-concavity assumptions help ensure the optimality of our threshold rule.

So inspired, we econometrically test our model. Intuitively, better earlier outcomes
shorten the sequential search process. But this need not be so. Assume that search
lasts T ≥ 1 stages, and the first web site has payoff W1 = X1+Z1. Consider the OLS
regression T = β0 + β1W1 + ϵ on data generated from our model. We claim that —
fixing the CTR σ1 = 1−G(u− ζ(c))n — the true coefficient obeys β1 > 0, provided
the outside option u is large enough and search cost c small enough. By Lemmas 1
and 3, the searcher clicks at stage i if Xi+ ζ(c) > Ωi = max(u,w1, w2, . . . , wi). In the
limit u → ∞ and c → 0, and so ζ(c) → ∞, the stage i search decision depends only
on the known factor, clicking if Xi > u−ζ(c) = ℓ̄. As W1 = X1+Z1 is correlated with
X2, one clicks the second web site more often with higher W1 (see §D.7) — i.e. β1 > 0.

In fact, search duration is not monotone in the first search outcome even ignoring
its known factor. For consider the OLS regression T = β0 + β2Z1 + ϵ. The absolute
true coefficient |β2| vanishes as u → ∞ and c → 0, fixing the CTR (see §D.7). This
follows once more because the clicking decision depends on Xi but not Zi for large u,
very small c, but with u− ζ(c) fixed. So T and Z1 are uncorrelated.

Recently, De Los Santos et al. (2012) (DHW) studies an online book market and
test three sine qua non predictions of sequential search models. In their most relevant
“test 3”, DHW consider an OLS regression T = β0+β3P1+ϵ of the number of searches
T on the price discount P1 at the first store. They assume that price discounts are
learned after visiting the store,19 and suggest that Weitzman’s model requires β3 < 0.
For a higher first price discount intuitively leads the searcher to stop more often.
Finding that β3 is not statistically different from 0, DHW reject Weitzman’s model.

But this logic misses selection effects. For a price learned after a store visit is best
modeled as a hidden factor: Z1 = P1. As our second regression shows, Weitzman’s
model yields a statistically insignificant coefficient β3 on the hidden factor for a large
outside option u and search cost c small relative to rewards — a plausible limit in

19DHW posit that consumer i’s payoff from buying at store j is uij = δij + αipj . Consumer i
knows his gross utility δij before searching store j, and learns the price discount pj after visiting
store j. In our model, δij is the known factor and the price discount pj is the hidden factor.
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their context.20 But if the searcher learns about the price discount P1 before searching,
then P1 = X1 + Z1, where the searcher sees the known factor X1. In this case, our
first regression shows that even β3 > 0 is consistent with Weitzman’s model when u

is large and c is small. So really any sign of β3 is consistent with Weitzman’s model.
While DHW use data for cases when users purchase from a web site after searching,

our regressions condition on participation. In §D.7, we study the regression T =

β0 + β3P1 + ϵ given a final purchase. Venturing the extreme case when P1 = X1, we
show that if the hidden factor density has a thin tail, then β3 ≥ 0 as u → ∞ and
c→ 0, contrary to the DHW conjecture: Higher price discounts do not shorten search.

A Prize Dispersion Proofs

A.1 Hidden Dispersion and Duration: Proof of Theorem 1

Index the distribution so that Zt experiences a mean-enhancing dispersion as t rises.
Let Ht and ζt(c) be the corresponding distribution function and search optionality.

Claim A.1 For any ∆ ≥ 0, Ht(ζt(c)−∆) rises in the dispersion index t.

Proof: Change variables in (5) to z = H−1
t (a) + ∆. Then

c =

∫ 1

Ht(ζt(c)−∆)

(1−Ht(H
−1
t (a) + ∆))

∂H−1
t (a)

∂a
da.

since dz = [∂H−1
t (a)/∂a]da. Now, dispersion means that ∂H−1

t (a)/∂a rises in t, i.e.
the quantile function steepens. Also, 1−Ht(H

−1
t (a) + ∆) rises in t. To see why, put

st(a,∆) ≡ Ht(H
−1
t (a) + ∆)), so that H−1

t (st(a,∆)) −H−1
t (a) ≡ ∆. Since H−1

t (s) −
H−1

t (a) rises in t if s > a, equality H−1
t (st(a,∆))−H−1

t (a) = ∆ demands that st(a,∆)

fall in t. Since the integrand rises in t, the lower bound Ht(ζt(c)−∆) rises too. □
Let t increase, changing Ht. By (8), the survival chance σn rises in δt(x , c) and

falls in u− ζt(c). Recalling (6), δt(x , c) =
∫∞
0
Ht(ζt(c)− s)g(x+ s)ds rises in t, since

Ht(ζt(c) − s) rises, by Claim A.1. Thus, σn increases if u − ζt(c) falls in t. Since a
mean-enhancing dispersion in Zt is a combination of a mean-preserving dispersion of

20For in DHW’s data, about 5% of visits to online bookstores result in a transaction (15561
transactions from 327074 searches). Since DHW suggest less than 2 visits per search, the success
chance is less than 10%; equivalently, the quitting chance is high, exceeding 90%. This in turn
implies that consumers’ outside option payoffs u must be high relative to the size of the rewards, by
(12). That consumers search despite such a low success chance implies a small search cost c > 0.
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Zt and a translation of Zt — namely, adding a positive constant to Zt — it suffices
that ζt(c) rises in both cases. First, since ζt(c) rises in any MPS of Zt by (5), ζt(c)
rises as Zt experiences a mean-preserving dispersion. Second, ζt(c) rises when Zt

experiences a translation by (5). Then ζt(c) rises in t, and thus u− ζt(c) falls. □

A.2 Search Duration and Participation: Proof of Theorem 2

We next prove Theorem 2(a) — for if the hidden factor remains unchanged, then so
does ζ(c), and thus X + ζ(c) stochastically rises/falls iff X stochastically rises/falls.

Claim A.2 Let X and Z change. If X + ζ(c) stochastically rises (falls), then the
participation chance σ1 rises (falls). If X + ζ(c) neither stochastically rises nor falls,
but X grows more disperse, σ1 falls for low outside options u, and rises for high u.

Proof: If X2 + ζ2(c) ⪰FSD X1 + ζ1(c), then G2(u− ζ2(c)) ≤ G1(u− ζ1(c)) for all u.
The chance σ1 = 1−G(u−ζ(c))N by (8) rises, and falls if X +ζ(c) falls stochastically.

Next, G1(u− ζ1(c))− G2(u− ζ2(c)) is single-crossing in u if X2 ⪰disp X1. For by
(3.B.3) in SS, X2 ⪰disp X1 iff G1(u) − G2(u − k) is single crossing in u for all k. If
X1 + ζ1(c) and X2 + ζ2(c) are not stochastically ranked, then their cdfs intersect, by
continuity — so that P (X1 + ζ1(c) ≤ ū) = P (X2 + ζ2(c) ≤ ū), for some ū. Thus,
G1(u− ζ1(c))−G2(u− ζ2(c)) is negative for u < ū and positive for u > ū. □

To prove Theorem 2 (b), let ∆⃗n = (∆1,∆2,∆3, . . . ,∆n−1), where gaps are ∆n ≡
xn − xn+1 ≥ 0. As Xj −Xn = Σn−1

k=j (Xk −Xk+1) = Σn−1
k=j∆k, the survival chance is

σn = P
(
{Xn + ζ(c) ≥ u} ∩j<n

{
ζ(c)− Σn−1

k=j∆k ≥ Zj

})
If ψ is the joint distribution of ∆⃗n and Xn, we may rewrite this as:

σn =

∫
xn∈R,∆⃗n∈Rn−1

+

I{xn+ζ(c)≥u}

n−1∏
j=1

H(ζ(c)− Σn−1
k=j∆k)dψ(∆⃗n, xn). (17)

Let Gn be the cdf of Xn, where X2 ≥disp X1. Since the gap between adjacent order
statistics of G2 exceeds that of G1 for the dispersive order, the gaps between consec-
utive known factors ∆⃗n jointly decrease stochastically as X grows less dispersive.

With no outside option (u = −∞), the indicator I in (17) is one. As X grows less
dispersive, ∆⃗n ≡ {X1 − X2, . . . ,Xn − Xn+1, . . . ,XN−1 − XN} falls stochastically, and
so σn rises. Next suppose u > −∞. If X stochastically rises, then so does the order
statistic Xn in (17), for n = 1, . . . , N . Since I{Xn≥u−ζ(c)} rises in Xn, so does σn. □

24



A.3 Ex-ante Quitting Chance: Proof of Theorem 3

Recalling (11), let qn = πn(u − ζ(c), c)N be the attraction for the hidden factor Zn,
for n = 1, 2. If Z2 is a mean preserving dispersion of Z1, it suffices that q1 < q2 as Z
iff u is low enough. We claim π2(u− ζ2(c), c) ⋛ π1(u− ζ1(c), c) as u ≶ ū for some ū.

LetHn be the cdf of Zn. Integrating (5) by parts, ζn(c) = −c+E[Z]+
∫ ζn(c)

−∞ Hn(z)dz.
As dispersion implies a MPS, the integral

∫ a

−∞H(z)dz rises, and so ζ2(c) > ζ1(c).21

Let Hn be the cdf of min{Zn, ζn(c)}. Then H2(z) − H1(z) = H2(z) − H1(z)

obeys the reverse single crossing property if z < ζ1(c), since H−1
2 is steeper than H−1

1 .
Likewise, H2(z)−H1(z) = H2(z)−1 ≤ 0 for z ∈ [ζ1(c), ζ2(c)), and H2(z)−H1(z) = 0

for z > ζ2(c). Altogether, H2 −H1 has at most one sign change from + to −.
Because π(u− ζ(c), c) = P (min(Z, ζ(c)) < u−X ) from (12):

π(u− ζ(c), c) =
∫∞
−∞ P ({min(Z, ζ(c)) < s}∩{s = u−X})ds =

∫∞
−∞Hn(s)g(u− s)ds.

Now, π2(u− ζ2(c), c)− π1(u− ζ1(c), c) =
∫∞
−∞[H2(s)−H1(s)]g(u− s)ds changes sign

at most one sign from + to − as u rises because this is true of H2(s) − H1(s), and
the density g is log-concave, by Karlin and Rubin (1955).

Next, it is impossible that π1(u − ζ1(c), c) > π2(u − ζ2(c), c) for all u. For if
so, since πn(u − ζn(c), c) is the cdf of X + min{Zn, ζn(c)}, it follows that X +

min{Z2, ζ2(c)} strictly FSD dominates X + min{Z1, ζ1(c)}. This is impossible, as
E[X +min{Z2, ζ2(c)}]=E[X +min{Z1, ζ1(c)}], given E[Z2]=E[Z1], and

E[min{Zn, ζn(c)}]− E[Zn] =
∫∞
ζn(c)

(ζn(c)− z)dHn(z) =
∫∞
ζn(c)

[1−Hn(z)]dz = c.

by (5). Hence π2(u− ζ2(c), c)− π1(u− ζ1(c), c) changes sign + to - once as u rises. □

B Selection Bias Proofs
B.1 Stochastic Shifts of the Known Factor: Proof of Lemma 4

We analyze the delay chance δ(x , c) in Claim B.1 and then use it to prove Lemma 4.

Claim B.1 δ(x , c) falls in c and is log-supermodular; also, δ(x , c)/G(x ) falls in x .
21When Z has full support, integration by parts requires limz→−∞ zH(z) < ∞. By l’Hopital’s

rule, limz→−∞ zH(z) = limz→−∞ −z2h(z). This limit must vanish, for otherwise the second moment∫∞
−∞ z2h(z)dz is infinite — impossible, as log-concave densities have finite moments (An, 1997).
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Proof: Set s = a − x in (6) so that δ(x , c) =
∫∞
0
H (ζ(c)− s) g(s + x )ds. Then

ζ ′(c) < 0 implies δc(x , c) < 0. Since H(ζ(c) − s) and g(s + x ) are log-supermodular
in (ζ(c), s) and (s,−x ), resp., and partial integration preserves log-supermodularity
(Karlin and Rinott, 1980), δ(x , c) is log-supermodular in (ζ(c),−x ), and so in (c, x ).

Next,
δ(x , c) = −H (ζ(c))G(x ) +

∫∞
0
h (ζ(c)− s)G(s+ x )ds. (18)

Since G(x ) is log-concave, G(s+x )/G(x ) falls in x , and thus so does δ(x , c)/G(x ). □
Proof of Lemma 4: To infer the conditional distribution of Xn after the searcher
enters stage n, let

η(x , n, c) = δ(x , c)n−1G(x )N−ng(x ) (19)

so that N
(
N−1
n−1

)
η(x , n, c) is the density of Xn, by (8). Using (8) and (19),

P (Xn ≤ a|enters stage n) =
N
(
N−1
n−1

) ∫ a

u−ζ(c)
η(x , n, c)dx

σn
=

∫ a

u−ζ(c)
η(x , n, c)dx∫∞

u−ζ(c)
η(x , n, c)dx

. (20)

This falls in (N, c, u,−n) if its numerator is log-supermodular in (a,N, c, u). By (19),

∂

∂a
log

[∫ a

u−ζ(c)

η(x , n, c)dx

]
=

δ(a, c)n−1G(a)N−ng(a)∫ a

u−ζ(c)
δ(x , c)n−1G(x )N−ng(x )dx

. (21)

The RHS of (21) rises in N , since G(a)/G(x ) > 1, for any x < a. Hence, the brack-
eted integral in (21) is log-supermodular in (N, a), and thus (20) falls in N . Since the
disappointment chance δ(x , c) is log-supermodular by Claim B.1, δ(a, c)/δ(x , c) rises
in c, if x < a. Since u−ζ(c) rises in c, the RHS of (21) rises in c. So

∫ a

u−ζ(c)
η(x , n, c)dx

is log-supermodular in (c, a). Then the conditional probability (20) falls in c. Simi-
larly, the RHS of (21) rises in u as u− ζ(c) rises in u, and so (20) falls in u. Finally,
δ(x , c)/G(x ) falls in x by Claim B.1, and so δ(x , c)/G(x ) > δ(a, c)/G(a) for all x < a.
Scaling (21) by δ(a, c)/G(a), we see that it falls in n, and so (20) rises in n. □

B.2 The Stopping Hazard Rate and Eventual Quitting Chance

We claimed after Lemma 4 that the stopping hazard rate Sn rises in the cost c. To
prove this, let EXn be the stage-n conditional expectation defined from (20). By (8):

1−Sn≡
σn+1

σn
=
(N − n)

∫∞
u−ζ(c)

[δ(x , c)/G(x )]η(x , n, c)dx

n
∫∞
u−ζ(c)

η(x , n, c)dx
=
N − n

n
EXn

[
δ(Xn, c)

G(Xn)

]
(22)
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First, δ(x , c)/G(x ) falls in x , by Claim B.1. The hazard rate Sn rises in c, as Xn

stochastically rises in c, by Lemma 4, and δ(x , c) falls in c, by (6) and ζ ′(c)<0. □

Claim B.2 For some threshold number of options N̄ < ∞, the eventual quitting
chance q̄ locally falls in search costs c if N ≤ N̄ , and locally rises if N>N̄ .

Proof: As q̄ ≡ (q− q0)/(1− q0), q0 = G(u− ζ(c))N by (10), and q = π(u− ζ(c), c)N

by (11), we have:

q̄ =
π(u− ζ(c), c)N −G(u− ζ(c))N

1−G(u− ζ(c))N
. (23)

Since π(x , c) ≡ G(x ) + δ(x , c) by (7), when N = 1, by equation (6), we have

q̄ = δ(u− ζ(c), c)/[1−G(u− ζ(c)] =

∫ ∞

u−ζ(c)

H(u− r)dG(r)

1−G(u− ζ(c))
= E[H(u−R)]

where the known factor R has cdf G/[1 − G(u − ζ(c))]. Since R is truncated with
lower support u−ζ(c), and ζ ′<0, R rises stochastically in c. So ∂q̄/∂c<0 if N = 1.

If LN(s)≡sN−1/(1−sN), then ∂ log(1−sN)/∂s=−NLN(s). By sign equivalence ∝:

∂q̄

∂c
∝ − ∂

∂c
log

[
1− π(u− ζ(c), c)N

1−G(u− ζ(c))N

]
= N

∂π(u− ζ(c), c)

∂c
LN(π(u− ζ(c), c)) +N

∂G(u− ζ(c))

∂c
LN(G(u− ζ(c)))

as ζ ′ < 0. Since π(u−ζ(c), c) = G(u−ζ(c))+
∫∞
u−ζ(c)

H (u− r) g(r)dr by (6)–(7), with
derivative −ζ ′(c)g(u−ζ(c))[1−H(ζ(c))] in c, and ∂G(u−ζ(c))/∂c = −ζ ′(c)g(u−ζ(c)),
we have

∂q̄

∂c
∝ 1−H(ζ(c))− LN(G(u− ζ(c))

LN(π(u− ζ(c), c))
. (24)

The last term in (24) vanishes as N → ∞, given 0 < G(u−ζ(c), c) < π(u−ζ(c), c) < 1

by (7), and LN(s) ≈ sN for 0 < s < 1 and large N . So ∂q̄/∂c > 0 for all large N .
Now, ∂q̄/∂c single-crosses 0 in N , since

∂2(logLN(s))

∂s∂N
=
N log(s)sN + 1− sN

s(1− sN)2
∝ sN log(sN) + 1− sN ≡ RHS.

Also, RHS = 0 when s = 1, and falls in sN for s < 1. Since RHS > 0 for s < 1,
LN(s) is log-supermodular in (N, s). Since G(x ) < π(x ) for all x by (7), the (signed)
last term in (24) rises in N . Hence, ∂q̄/∂c ≶ 0 as N ≶ N̄ , for some N̄ > 1. □

27



B.3 Hazard Rates: Proof of Theorem 4

A. Quitting Hazard Rates. Given Claim B.3, for low search costs c, the quitting
hazard rate Qn ≡ qn/σn rises in n since the survival chance σn falls and qn rises in n.

Claim B.3 The stage n quitting chance qn in (10) rises in n for small c, hump-shaped
in n for middle c, and falls in n for large c.

Proof: By (10), qn+1/qn = [(N − n)/(n+ 1)]δ(u− ζ(c), c)/G(u− ζ(c)) falls in n. If
δ(u− ζ(c), c)/G(u− ζ(c)) < 1/N , then qn+1/qn < 1 for all n, and hence qn falls in n.
Similarly, if δ(u − ζ(c), c)/G(u − ζ(c)) > N , then qn/qn−1 > 1 for all n and thus qn
rises in n. If 1/N < δ(u− ζ(c), c)/G(u− ζ(c)) < N , then qn rises and then falls in n.

To see how the threshold δ(u− ζ(c), c)/G(u− ζ(c)) changes in c, use (6) to derive

δ(u− ζ(c), c)

G(u− ζ(c))
=

1

G(u− ζ(c))

∫ ∞

0

H(ζ(c)− r)g(r + u− ζ(c))dr. (25)

Since G is log-concave and ζ ′(c) < 0, the next product falls in c, and vanishes as
c → ∞, since then ζ(c) → −∞ — and the ratio (25) falls in c and vanishes as
c→ ∞:

g(r + u− ζ(c))

G(u− ζ(c))
=

g(r + u− ζ(c)

G(r + u− ζ(c))

G(r + u− ζ(c))

G(u− ζ(c))
.

Finally, we argue (25) explodes as c→ 0: since ζ(c) → ∞ as c→ 0, H(ζ(c)− r) → 1

and limc→0

∫∞
0
g(s+u−ζ(c))ds/G(u−ζ(c)) = limζ(c)→∞[1−G(u−ζ(c))]/G(u−ζ(c)) =

∞. Then δ(u− ζ(c), c)/G(u− ζ(c)) falls from ∞ to 0 as c rises from 0 to ∞. □
B. Exercising Hazard Rates. Equation (26) below provides a formula for the
hazard rate of exercising an inside option En. It rises in n as Xn falls stochastically
in n by Lemma 4 and the integral (26) falls in Xn, by log-concavity of g.

Claim B.4 We have the formula:

En = 1−H (ζ(c)) + EXn

[∫ ∞

0

h (ζ(c)− s) g(s+ Xn)/g(Xn)ds

]
. (26)

Proof: Formula (8) yields σn+1=
(
N
n

) ∫∞
u−ζ(c)

δ(x , c)ndG(x )N−n. Integrating by parts,

σn+1 =

(
N

n

)[
−δ(u− ζ(c), c)nG(u− ζ(c))N−n − n

∫ ∞

u−ζ(c)

G(x )N−nδ(x , c)n−1δx (x , c)dx

]
= −qn −

(
N

n

)
n

∫ ∞

u−ζ(c)

G(x )N−nδ(x , c)n−1δx (x , c)dx . (27)

28



using δ(∞, c) = 0 by (6) and the qn formula in (10). Differentiating (18), δx (x , c) =

−H (ζ(c)) g(x )+
∫∞
0
h (ζ(c)− s) g(s+ x )ds. Substitute δx into (27), and divide by σn:

σn+1

σn
= − qn

σn
+H (ζ(c))−

∫∞
u−ζ(c)

(∫∞
0
h (ζ(c)− s) [g(s+ x )/g(x )]ds

)
η(x , n, c)dx∫∞

u−ζ(c)
η(x , n, c)dx

.

using η(x , n, c) = δ(x , c)n−1G(x )N−ng(x ) from (19). Substituting this and Qn ≡
qn/σn into En ≡ Sn −Qn = 1− σn+1/σn −Qn gives formula (26). □
C. Recall Hazard Rates. We characterize Rn = En−Kn using (26) and a new
formula for Kn. Let K̄n(xn, c) be the interim striking hazard rate on entering stage n if
Xn=xn. For the EXn operator (§B.2), the striking hazard rate is Kn=EXn [K̄n(Xn, c)].
Consider the chance of striking in stage n if Xn=xn and Zn<ζ(c):

A(xn, c) ≡
∫ ζ(c)

u−xn

h(zn)

[ ∫∞
xn
H(xn + zn − r)g(r)dr∫∞

xn
H(xn + ζ(c)− r)g(r)dr

]n−1[
G(xn + zn − ζ(c))

G(xn)

]N−n

dzn. (28)

Claim B.5 The interim striking hazard rate is K̄n(xn, c) = 1−H(ζ(c)) + A(xn, c).

Proof: First, assume the searcher strikes option n if he explores it. Assume Xn = xn.
After arriving at stage n, he strikes option n iff its payoff (a) dominates all prior inside
options, namely xn + Zn > Xj + Zj for all j < n, (b) dominates the outside option
xn +Zn > u, and (c) ex ante dominates option n+ 1, namely xn +Zn > Xn+1 + ζ(c).

Assume Zn ≥ ζ(c) and the searcher enters stage n. First, (a) is satisfied because
xn+Zn ≥ xn+ζ(c) > Xj+Zj for all j < n— for if xn+ζ(c) ≤ Xj+Zj, then the searcher
never explores option n. Second, (b) is satisfied because xn + Zn ≥ xn + ζ(c) > u —
for if xn + ζ(c) ≤ u, then the searcher quits rather than explores option n. Finally,
(c) is met since Xn+1 < xn and Zn ≥ ζ(c). In sum, the searcher strikes option n with
chance P (Zn ≥ ζ(c)) = 1−H(ζ(c)) if he enters stage n.

Next, assume Zn < ζ(c). Given Xn = xn, by the Markov property of order
statistics, the joint distribution of earlier inside options (Xj,Zj) for all j < n is the
same as that of (n−1) i.i.d random options with a known factor X > xn and a payoff
X +Z < xn+ ζ(c). So the probability that each prior option satisfies condition (a) is

P (X + Z < xn + Zn|X > xn,X + Z < xn + ζ(c)) =

∫∞
xn
H(xn + Zn − r)g(r)dr∫∞

xn
H(xn + ζ(c)− r)g(r)dr

.

By the Markov property again, Xn+1 is the first order statistic of (N − n) i.i.d.r.v.s
with cdf G/G(xn) on (−∞, xn]. Event (c) has chance [G(xn + Zn − ζ(c))/G(xn)]

N−n.
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As event (b) holds if Zn > u− xn, starting stage n, the chance of (a)–(c) is A(xn, c). □

Claim B.6 (Striking Hazard Rate Formula) Kn = EXn [K̄n(Xn, c)] equals:

Kn=1−H(ζ(c)) + EXn

(∫ ∞

0

h (ζ(c)−s)
[∫∞

s
H(ζ(c)− t)g(t+ Xn)dt∫∞

0
H(ζ(c)− t)g(t+ Xn)dt

]n−1
g(s+ Xn)

g(Xn)
ds

)

Proof: Recall that the expectation EXn uses density η(xn, n, c) in (20). Given (28)
and δ(xn, c) =

∫∞
xn
H(xn+ζ(c)−r)g(r)dr by (6), the expectation EXn [A(Xn, c)] equals

∫∞
u−ζ(c)

[∫ ζ(c)

u−xn
h(zn)

[∫∞
xn

H(xn+zn−r)g(r)dr

δ(xn,c)

]n−1 [
G(xn+zn−ζ(c))

G(xn)

]N−n

dzn

]
η(xn, n, c)dxn∫∞

u−ζ(c)
η(x , n, c)dx

.

Substitute η(xn, n, c) = δ(xn, c)
n−1G(xn)

N−ng(xn) from (19), and change variables in
the numerator: x = xn + zn − ζ(c), s = ζ(c) − zn and t = r − x with supports
x ∈ [u− ζ(c),∞), s ∈ [0,∞) and t ∈ [s,∞). Then EXn [A(Xn, c)] becomes∫∞

u−ζ(c)

∫∞
0
h (ζ(c)− s)

[∫∞
s
H(ζ(c)− t)g(t+ x )dt

]n−1
G(x )N−ng(s+ x )dsdx∫∞

u−ζ(c)
η(x , n, c)dx

.

Since η(x , n, c) = [
∫∞
0
H(ζ(c) − t)g(t + x )dt]n−1G(x )N−ng(x ) by (6) and (19), and

recalling that EXn is defined using the probability density η(xn, n, c), we have

EXn [A(Xn, c)] = EXn

[∫ ∞

0

h (ζ(c)− s)
g(s+ Xn)

g(Xn)

[∫∞
s
H(ζ(c)− t)g(t+ Xn)dt∫∞

0
H(ζ(c)− t)g(t+ Xn)dt

]n−1

ds

]
.

By Claims B.4 and B.6, the recall hazard rate is Rn=En−Kn=EXn [B(Xn, n)], where

B(x , n) ≡
∫ ∞

0

h (ζ(c)− s)
g(s+ x )

g(x )

(
1−

[∫∞
s
H(ζ(c)− t)g(t+ x )dt∫∞

0
H(ζ(c)− t)g(t+ x )dt

]n−1
)
ds. (29)

Here, B(x , n)g(x ) is the recall chance at stage n if one exercises an inside option with
payoff x + ζ(c) immediately. For h(ζ(c)− s)g(s+ x ) is the probability density of an
option with known factor x + s and payoff x + ζ(c). The last term is the chance that
one other option has a known factor below x +s, assuming its payoff is below x +ζ(c).

Claim B.7 The function B(x , n) weakly falls in x .

Proof: Put ν(s, x , ζ(c))≡
∫∞
s
H(ζ(c)−t)g(t+x )dt. Then ν(0, x , ζ(c))=δ(x , c) by (6).
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Rework (29), integrate by parts, and simplify via νs(s, x , ζ(c))=−H(ζ(c)−s)g(s+x ):

B(x , n) = −
∫ ∞

0

(
1−

[
ν(s, x , ζ(c))

ν(0, x , ζ(c))

]n−1
)
d

[∫ ∞

s

h (ζ(c)− t)
g(t+ x )

g(x )
dt

]
= −

∫ ∞

0

[∫ ∞

s

h (ζ(c)− t)
g(t+ x )

g(x )
dt

]
d

[
ν(s, x , ζ(c))

ν(0, x , ζ(c))

]n−1

(30)

as (∂/∂s)
∫∞
s
h (ζ(c)− t) [g(t+x )/g(x )]dt=−h (ζ(c)− s) g(s+ x )/g(x ). So (30) gives:

B(x , n)

n− 1
=

∫ ∞

0

H(ζ(c)− s)g(s+ x )

g(x )

[∫∞
s
h (ζ(c)− t) g(t+ x )dt∫∞

s
H(ζ(c)− t)g(t+ x )dt

] [
ν(s, x , ζ(c))

ν(0, x , ζ(c))

]n−1

ds.

First, g(s+x )/g(x ) falls in x . Next, since H and g are log-concave, H(ζ(c)−t)g(t+x )

is log-supermodular in (ζ(c),−x , t), as is the integral ν(s, x , ζ(c)) in (ζ(c),−x ), by
Karlin and Rinott (1980). So ν(s, x , ζ(c)) is log-submodular in (ζ(c), x ). The first
bracketed term ∂ log[ν(s, x , ζ(c))]/∂ζ(c) falls in x . The last term likewise falls in x . □

Proof of Theorem 4: The hazard rate Rn=En−Kn rises in n by (29), as B(x , n)

rises in n and falls in x (Claim B.7), and Xn falls stochastically in n by Lemma 4. □

C Stationary Benchmark Proofs

C.1 Equivalent Thin Tail Characterizations

Let ℓ = limx→F−1(1) f(x )/[1− F (x )]. If a cdf F has a thin tail, then ℓ = ∞.

Claim C.1 If f ′ exists and F−1(1)=∞, then limx→F−1(1) f(s+x )/f(x )=e−sℓ,∀s>0.

Proof: As F−1(1) = ∞, limγ→1 f(F
−1(γ)) = 0. Now, l’Hôpital’s rule implies that

ℓ = limx→F−1(1) f(x )/[1− F (x )] = limx→F−1(1)−f ′(x )/f(x ). Then for all s>0:

lim
x→∞

log

(
f(s+ x )

f(x )

)
= lim

x→∞

∫ s

0

f ′(r + x )

f(r + x )
dr =

∫ s

0

lim
x→∞

f ′(r + x )

f(r + x )
dr = −sℓ,

by the Monotone Convergence Theorem, for f ′/f is monotone if f is log-concave. So

lim
x→∞

f(s+ x )

f(x )
= lim

x→∞
exp

[
log

(
f(s+ x )

f(x )

)]
=exp

[
lim

x→∞
log

(
f(s+ x )

f(x )

)]
=e−sℓ ∀s>0.

Claim C.2 If F ′′ = f ′ exists and F−1(1) = ∞, then F has a thin tail if and only if
limx→F−1(1) f(s+ x )/f(x ) = 0,∀s>0.
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Proof: (⇒) Given a thin tail, ℓ = ∞ and f(s+x )/f(x ) → 0 for s > 0 by Lemma C.1.
(⇐) If limx→∞ f(s+ x )/f(x ) = 0 ∀s > 0, then limx→F−1(1) f(x )/[1−F (x )] equals

lim
x→∞

(∫ ∞

0

f(s+ x )

f(x )
ds

)−1

=

(
lim

x→∞

∫ ∞

0

f(s+ x )

f(x )
ds

)−1

=

(∫ ∞

0

lim
x→∞

f(s+ x )

f(x )
ds

)−1

= ∞.

by continuity and the Monotone Convergence Theorem. Hence, F has a thin tail. □

C.2 Number of Options: Proof of Theorem 6

Index the striking, recall and quitting hazard rates by the number of options N .

Claim C.3 The striking hazard rate KN
n falls in the total number of options N .

Proof: As g(s+ x )/g(x ) falls in x by log-concavity, and
∫∞
s
H(ζ(c)− t)g(t+ x )dt is

log-submodular in (s, x ) by log-concavity of H and g, Claim B.6’s bracketed integral
falls in Xn. As Xn stochastically rises in N (Lemma 4), KN

n falls in N . □
As the N option striking hazard rate KN

n falls in N , K∞
n exists.

Claim C.4 K∞
n = 1−H(ζ(c)) if G has a thin tail, and K∞

n > 1−H(ζ(c)) otherwise.

Proof: In Claim B.6, the nth known factor Xn → G−1(1) = ∞ in probability, as
N → ∞. If G has a thin tail, then limx→∞ g(s+ x )/g(x ) = 0 for s>0, by Claim C.2,
and so g(s+Xn)/g(Xn) vanishes asN → ∞. By Claim B.6, limN→∞KN

n = 1−H(ζ(c)).
Assume G lacks a thin tail. Let Γ(s,Xn) be the bracketed term in Claim B.6’s

integral for Kn. As limx→∞ g(t+ x )/g(x )=e−tℓ for ℓ ∈ (0,∞) by Claim C.1,

Γ(s, x )≡
∫∞
s
H(ζ(c)− t)g(t+ x )/g(x )dt∫∞

0
H(ζ(c)− t)g(t+ x )/g(x )dt

→
∫∞
s
H(ζ(c)− t)e−ℓtdt∫∞

0
H(ζ(c)− t)e−ℓtdt

>0 as x → ∞.

(31)
As limx→∞ g(s+ x )/g(x ) = e−sℓ > 0 and Xn → G−1(1) = ∞ in probability as N ↑ ∞,
the second term in the Claim B.6 formula is positive as N ↑∞: K∞

n >1−H(ζ(c)). □

Claim C.5 RN
n falls in the number of options N and R∞

n = 0 iff G has a thin tail.

Proof: As B(x , n) falls in x by Claim B.7, RN
n = EXn [B(Xn, n)] falls in N because

Xn rises stochastically in N by Lemma 4. Since RN
n ≥ 0 falls in N , limN→∞RN

n =

limN→∞EXn [B(Xn, n)] exists. Then limN→∞RN
n = limx→G−1(1)B(x , n), because Xn

converges to G−1(1) in probability as N → ∞.
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If G has a thin tail, then g(s+ x )/g(x ) vanishes for all s > 0 as x → G−1(1) = ∞
by Claim C.2, and so limx→G−1(1)B(x , n) = 0 by (29).

If G does not have a thin tail, then the parenthesized term in (29) is 1−Γ(s, x )n−1

(recalling (31)), and its limit is boundedly positive as x → G−1(1), for any s > 0.
Also, limx→G−1(1) g(s+ x )/g(x ) = e−sℓ for some ℓ ∈ (0,∞) by Claim C.1, and thus it
is boundedly positive for any s > 0. Hence, limx→G−1(1)B(x , n) > 0, by (29).

Altogether, limN→∞RN
n = limx→G−1(1)B(x , n) = 0 iff G has a thin tail. □

Claim C.6 QN
n falls in the total number of options N and has limit Q∞

n = 0.

Proof: Expanding Qn ≡ qn/σn using (8) and (10):

QN
n =

δ(u− ζ(c), c)nG(u− ζ(c))N−n

n
∫∞
u−ζ(c)

δ(x , c)n−1G(x )N−ng(x )dx
.

Easily, QN
n falls in N , since G(x )/G(u − ζ(c)) > 1 except at x = u − ζ(c), and so

[G(x )/G(u− ζ(c))]N−n is monotone in N . By the monotone convergence theorem, we
can swap the (infinite) limit as N → ∞ and integration: lim

N→∞
QN

n = Q∞
n = 0. □

D Web Search Proofs
D.1 Optionality in a Gaussian World: Proof of Lemma 5

As α increases, the hidden factor experiences a mean preserving contraction, and so
ζ(α, c) falls. As α ↑ 1, (14) reduces to c =

∫ 0

ζ(α,c)
ds = −ζ(α, c), and so ζ(α, c) ↓ −c.

Next, change variables to s′ = s/
√
1− α2 in (14), and let z(α) ≡ ζ(α, c)/

√
1− α2.

This yields c/
√
1− α2 =

∫∞
z(α)

[1− Φ (s′)] ds′. The LHS rises to ∞ as α rises to 1.
Since the mean of a left truncated Gaussian distribution is finite,

∫∞
z(α)

[1− Φ (s′)] ds′ =

E[max{z(α), S ′}]− z(α) is finite if z(α)>−∞. So z(α) ↓ −∞ as α rises to 1. □

Claim D.1 The search optionality ζ(α, c) is concave-convex in the accuracy α.

Proof: Again, let z(α) = ζ(α, c)/
√
1− α2. Differentiation yields

ζα(α, c) = − α√
1− α2

ϕ(z(α))

1− Φ(z(α))
< 0

ζαα(α, c) =
−1

(
√
1− α2)3

ϕ(z(α))

1− Φ(z(α))

(
1− α2

{
ϕ(z(α))

1− Φ(z(α))
− z(α)

}2
)
. (32)

First, ϕ(z)/[1 − Φ(z)] − z → ∞ as z ↓ −∞, and is positive and decreasing. For it
is well-known that the conditional mean y(z) = E[Z|Z > z] ≡

∫∞
z
sdΦ(s)/[1− Φ(z)]
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equals the inverse Mill’s ratio, namely, ϕ(z)/[1 − Φ(z)]. But y(z) − z has slope less
than one, by log-concavity of the Gaussian. Since z(α) decreases to −∞ as α ↑ 1,
the bracketed term in (32) reverse single-crosses through 0 as α traverses [0, 1]. □

D.2 Accuracy and Behavior: Proof of Proposition 1

Set X = αX and Z =
√
1− α2Z in (7) to derive the attraction

π(α, x) =

∫ ∞

0

Φ

(
ζ(α, c)− αs√

1− α2

)
ϕ(x+ s)ds+ Φ(x). (33)

By (12), q = π(α, ℓ(α, u, c))N . We argue in Appendix §D.3 that

∂π(α, ℓ(α, u, c))

∂α
= −

[
1− Φ

(
ζ(α, c)/

√
1− α2

)]
ℓ(α, u, c)ϕ(ℓ(α, u, c))/α. (34)

We have ∂q/∂α > 0 iff ∂π(α, ℓ(α, u, c))/∂α > 0, and so by (34), iff ℓ(α, u, c) < 0, or
ζ(α, c) > u. Given Lemma 5, this validates Figure 4 and proves the first statement.

Next, by (9), the expected search time τ = N
∫∞
ℓ(α,u,c)

π(α, x)N−1ϕ(x)dx. We show
that τα is single-crossing in u, namely, negative for lower u and positive for higher u.

Now, ℓα(α, u, c) falls in u, and for low enough u, ℓα(α, u, c) > 0 by (15). Since
πα(α, x, c) < 0 by Claim D.2 (below), we have τα < 0 for low enough u, from (9).

Suppose that u is large so that ℓα(α, u, c) < 0. Since ℓα(α, u, c) = −[ℓ(α, u, c) +

ζα(α, c)]/α and ζα < 0 (Lemma 5), ℓ(α, u, c) > 0. Differentiate (9), and then change
variables s = x− ℓ(α, u, c). Writing ℓ(α, u, c) = ℓ, the slope ∂τ/∂α equals:

− ℓαNπ(α, ℓ)
N−1ϕ(ℓ) +N(N − 1)

∫ ∞

0

π(α, ℓ+ s)N−2πα(α, ℓ+ s)ϕ(ℓ+ s)ds

= Nπ(α, ℓ)N−1ϕ(ℓ)

(
−ℓα + (N − 1)

∫ ∞

0

[
π(α, ℓ+ s)

π(α, ℓ)

]N−1
πα(α, ℓ+ s)

π(α, ℓ+ s)

ϕ(ℓ+ s)

ϕ(ℓ)
ds

)

Write this as Nπ(α, ℓ)N−1ϕ(ℓ)Υ(α, u). Now, the integrand is negative and rises
in ℓ, because: (i) 0 > πα(α, ℓ + s)/π(α, ℓ + s) rises in ℓ by log-supermodularity
of π(α, x) (Claim D.2); (ii) π(α, ℓ + s)/π(α, ℓ) falls in ℓ by log-concavity of π(α, x)
in x (Claim D.3); and (iii) the ϕ ratio falls in ℓ, as ϕ is strictly log-concave. Since
ℓu(α, u, c) > 0, the integrand rises in u. Also, ℓα(α, u, c) falls in u by (15). As
Υ(α, u) is increasing in u, τα(α, u) is strictly single-crossing in u. But as noted above,
τα(α, u) < 0 for small enough u. When u→ ∞, ℓα(α, u, c) → −∞ and so Υ(α, u) > 0,
and τα(α, u) > 0. So τα(α, u) changes sign exactly once as u rises from −∞ to ∞. □

Claim D.2 The attraction π obeys πα(α, x) < 0 < (log[π(α, x)])xα.
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Proof: Since ∂[ζ(α, c)/
√
1− α2]/∂α < 0 by Lemma 5, differentiating (33) yields

πα < 0. Next, rewrite (33) as π(α, x) =
∫∞
−∞ ϕ(x+ s)f(α, s)ds, where

f(α, s) ≡ Φ
(
(ζ(α, c)− αs)/

√
1− α2

)
for s > 0 and f(α, s) ≡ 1 for s ≤ 0.

Since the Gaussian density satisfies ϕ′(x) = −xϕ(x), we have

− ∂ log[π(α, x)]

∂x
=

∫∞
−∞(x+ s)ϕ(x+ s)f(α, s)ds∫∞

−∞ ϕ(x+ s)f(α, s)ds
=

∫∞
−∞ rϕ(r)f(α, r − x)dr∫∞
−∞ ϕ(r)f(α, r − x)dr

. (35)

This is the mean of a r.v. R with density ϕ(r)f(α, r − x). Next, we argue f(α, s) is
log-submodular, or equivalently f(α, s2)/f(α, s1) falls in α for all s2 > s1. First, if
s1, s2 < 0, we have f(α, s2)/f(α, s1) ≡ 1/1 = 1 weakly falls in α. Second, if s1, s2 > 0,
then f(α, si) ≡ Φ((ζ(α, c)− αsi)/

√
1− α2) for i = 1, 2. Here, it thus suffices that

∂ log[f(α, s)]

∂s
= − αs√

1− α2
ϕ

(
ζ(α, c)− αs√

1− α2

)/
Φ

(
ζ(α, c)− αs√

1− α2

)
. (36)

falls in α. This follows since Φ is log-concave, and because [ζ(α, c)−αs]/
√
1− α2 falls

in α, as ∂[ζ(α, c)/
√
1− α2]/∂α < 0 by Lemma 5 and s > 0. Third, for s1 ≤ 0 < s2,

f(α, s2)/f(α, s1) = f(α, s2) = Φ
(

ζ(α,c)−αs2√
1−α2

)
falls in α. Altogether f(α, s) is log-

submodular, and thus the middle term in (35) falls in α, or ∂2 log[π(α, x)]/∂α∂x > 0.

Claim D.3 For x ≥ 0, the attraction π obeys πx(α, x) > 0 > (log[π(α, x)])xx.

Proof: For the log-concavity of π(α, x) in x, integrate (33) by parts to get

π(α, x) =
α√

1− α2

∫ ∞

0

ϕ

(
ζ(α, c)− αs√

1− α2

)
Φ(x+ s)ds+ Φ(x)

(
1− Φ

(
ζ(α, c)√
1− α2

))
.

Then

πx(α, x) =
α√

1− α2

∫ ∞

0

ϕ

(
ζ(α, c)− αs√

1− α2

)
ϕ(x+s)ds+ϕ(x)

(
1− Φ

(
ζ(α, c)√
1− α2

))
> 0

Since the Gaussian density ϕ is hump-shaped and peaks at 0, the RHS falls in x ≥ 0.
In other words, (log[π(α, x)])xx < 0 for x ≥ 0. □
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D.3 Accuracy and Quitting Chance: Proof of Equation (34)

Put u = ζ(α, c) and x = ℓ(α, u, c) in (33). Then (∂/∂α)π(α, ℓ(α, u, c)) equals∫ ∞

ℓ(α,u,c)

ϕ

(
u− αs√
1− α2

)
(αu− s)√
1− α2

dΦ(s) +
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
= ϕ(u)

∫ ∞

ℓ(α,u,c)

ϕ

(
s− αu√
1− α2

)
(αu− s)√
1− α2

ds+
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
= − ϕ(u)√

1− α2
ϕ

(
ℓ(α, u, c)− uα√

1− α2

)
+
∂ℓ(α, u, c)

∂α
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
=

(
−u+ ζ(α, c)

α2

)
ϕ(ℓ(α, u, c))

[
1− Φ

(
ζ(α, c)√
1− α2

)]
The second equality uses the Gaussian density property ∂ϕ(s)/∂s = −sϕ(s). Since
the quitting chance is q = π(α, ℓ(α, u, c))N by (12),

∂q

∂α
= Nπ(α, ℓ(α, u, c))N−1

(
−u+ ζ(α, c)

α2

)
ϕ

(
u− ζ(α, c)

α

)[
1−Φ

(
ζ(α, c)√
1− α2

)]
(37)

D.4 Accuracy Helps the User

Claim D.4 The user’s marginal benefit of accuracy is positive and single-peaked in u.

Proof: Since ∂V/∂u = q by (16), ∂2V/∂u∂α = ∂q/∂α. We can derive ∂V/∂α by
integrating (37) over u. We use the boundary condition ∂V/∂α|u=∞ = 0, because as
u → ∞ a user never clicks through and the accuracy becomes irrelevant for payoff.
Integrating (37) in u yields

∂V(α, c, u)
∂α

=

[
1− Φ

(
ζ(α, c)√
1− α2

)]∫ ∞

ℓ(α,u,c)

Nπ(α, x)N−1xdΦ(x). (38)

Since ℓ(α, u, c) > −∞ for any u > −∞, we have
∫∞
ℓ(α,u,c)

xdΦ(x) > 0. As π(α, x)N−1 is
positive and strictly increasing, and

∫∞
ℓ(α,u,c)

xdΦ(x) > 0, the RHS of (38) is positive.22

Hence, ∂V/∂α > 0. But the lower support of the integral in (38) rises in u. As the
integrand is first negative and then positive, ∂V/∂α rises and then falls in u. □

22By Karlin and Rubin (1955), if f is single-crossing and
∫
f(x)dx > 0, positivity is preserved if

one multiplies the integrand by a positive and increasing function b(x), namely
∫
f(x)b(x)dx > 0.
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D.5 Value of Search Engine: Proof of Proposition 2

A. Changing Outside Option. Let qα be the value of q when the accuracy is α.
By (16),

∂[V(α, c, u)− V(0, c, u)]
∂u

= qα − q0.

To show that the value of search engine rises/falls in u as ζ(0, c) ≷ u, we prove a
reverse single crossing property: qα − q0 ≶ 0 when ζ(0, c) ≶ u.

Let ζ(0, c) < u. If α = 0 (so no known factor), the user never clicks, and elects his
outside option with chance q0 = 1. So qα′ − q0 ≤ 0 for all α′ > 0. Posit ζ(0, c) ≥ u.
If α = 0, the user searches every period, choosing his outside option if all N searches
fail. So q0 = ΦN(u), by prospective independence. For α > 0, the user exercises the
outside option at least if it is best (chance ΦN(u)). So qα ≥ ΦN(u), and qα − q0 ≥ 0.

Next, Π(α, c, u) = V(α, c, u) − V(0, c, u) → 0 since V(α, c, u) − u → 0 as u → ∞
for all α. When u = −∞, we have V(α, c,−∞) = E[αXb +

√
1− α2Zb]− τc− κ and

∂V/∂α|α=0 = E[Xb]. Also, E[Xb] > 0 when α = 0, as a user is likely to exercise an
earlier web site and the known factors are sorted in descending order and have zero
expected value. So Πα(α, c,−∞) > 0 at α = 0, and Π(α, c,−∞) > 0 for all α > 0.

B. Changing Clicking Cost. Equation (16) yields:

∂[V(α, c, u)− V(0, c, u)]
∂c

= τ0 − τα.

Now we argue that the value of search engine is single peaked in c. First, as c → 0,
ζ(α, c) → ∞, by (14), and thus the cutoff w̄n+1 → ∞ for all n, by Lemma 3. In the
limit, the user clicks every web site, and so V (α, c, u) → E[max{u,W1,W2, . . . ,WN}].

Next, as c → ∞, ζ(α, c) → −∞, and so the cutoff w̄n+1 → −∞ for all n, by
Lemma 3. In the limit, the user never clicks a web site, and thus V (α, c, u) → u.

Since ζ(0, c) is continuous in c, and ζ(0, c) → ±∞ respectively as c ↓ 0 and
c ↑ ∞, and as ∂ζ(0, c)/∂c < 0, there exists ĉ > 0 such that ζ(0, c) < u iff c > ĉ.
If c > ĉ, the user never clicks, and his search time is τ0 = 0; hence, τ0 − τα ≤ 0.

Suppose c < ĉ. When α = 0, the user stops at stage n < N iff the current web
site payoff exceeds w̄n+1 = ζ(0, c), namely, if zn > ζ(0, c), recalling Lemma 3. When
α > 0, the user stops if αxn +

√
1− α2zn ≥ αxn+1 + ζ(α, c). Since xn > xn+1, a user

accepts web site n if zn ≥ ζ(α, c)/
√
1− α2. Since ζ(α, c)/

√
1− α2 falls in α, we have

ζ(α, c)/
√
1− α2 < ζ(0, c), and so a user is more likely to stop if α > 0 than if α = 0.

Hence, τ0 − τα ≥ 0. All told, the search engine value is single-peaked in the cost c. □
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D.6 Search Engine Synergies: Proof of Proposition 3

First, the number of options N and accuracy α are complements. To see this, consider
the slope ∂V/∂α. This exists by (38), and is positive. Also, differencing (38) in N :

∂V
∂α

(N + 1)− ∂V
∂α

(N) ∝
∫ ∞

ℓ(α,u,c)

π(α, x)N [(N + 1)π(α, x)−N ]xϕ(x)dx. (39)

Now, [(N +1)π(α, x)−N ] transitions negative to positive exactly once as x increases
from −∞ to ∞, as πx(α, x) > 0 by Claim D.3. Also, π(α,−∞) = 0 and π(α,∞) = 1

by (33), since ℓ(α, u, c) rises from −∞ to ∞ as u rises from −∞ to ∞, given (15).
Given the x factor, the integrand has 0 or 2 sign changes. In the first case, we

are done. Otherwise, the sign sequence is +,−,+ as x rises from −∞ to ∞. Since
ℓu(α, u, c) > 0, the difference (39) first falls in u, then rises, and finally falls. If (39)
vanishes as u→ ∞ (true, as ℓu(α, u, c) explodes), and is positive at the local minimum
u = ū where the integrand shifts from falling to rising, then (39) is always positive.

Now, u only affects the integral in (39) via the lower support ℓ(α, u, c). As its
minimum is at u = ū, and ℓu(α, u, c) > 0, the integrand [(N+1)π(α, x)−N ]x changes
from + to − at x = ℓ(α, ū, c). Since [(N+1)π(α, x)−N ] and x single-cross in x, their
product’s first sign change is at x = ℓ(α, ū, c). There are only two possible cases:

Case 1: (N+1)π(α, ℓ(α, ū, c)) = N and ℓ(α, ū, c) < 0. Since (N+1)π(α, x)−N
rises in x by Claim D.3, we have (N + 1)π(α, x) − N > 0 for x ≥ ℓ(α, ū, c). By
Claim D.4, ∂V/∂α > 0. By (38),

∫∞
ℓ(α,ū)

π(α, x)Nxϕ(x)dx > 0. Since the integrand
single-crosses in x, the integral remains strictly positive when the integrand is scaled
by the increasing function b(x) = (N + 1)π(α, x) − N > 0 on [ℓ(α, ū),∞), as noted
in footnote 22. Altogether, the integral in (39) is strictly positive at u = ū.

Case 2: (N +1)π(α, ℓ(α, ū, c)) < N and ℓ(α, ū, c) = 0. Since the expected time
τ increases in N by (the text result after) Theorem 6, its definition in (9) yields:∫ ∞

ℓ(α,ū)

π(α, x)N−1[(N + 1)π(α, x)−N ]ϕ(x)dx = τ(N + 1)− τ(N) > 0.

This integrand is single-crossing in x, and is the integrand in (39) times 1/x. Since
x ≥ ℓ(α, ū, c) = 0, the integral in (39) is positive, by Karlin and Rubin (1955). □
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D.7 Proofs for Sequential Web Search in §8.3

Claim D.5 Posit limit (⋆): the outside option u explodes (u ↑ ∞), and the clicking
cost vanishes (c ↓ 0) but the CTR holds constant. Then (a) the limit coefficient β1 is
positive, and (b) the coefficient β2 tends to 0.

Proof of (a): Let EC be the click-through event X1 > u − ζ(c) or T ≥ 1,
by (15). The OLS sample estimate of β1 is β̂1 = Cove(T,W1|EC)/Vare(W1|EC), where
Cove(T,W1|EC) and Vare(W1|EC) are the sample covariance and variance given EC .
Then β̂1 converges in probability to β1=Cov(W1, T |EC)/Var(W1|EC) as N ↑ ∞.

Since the cdf of X1 is P (X1 ≤ x1) = G(x1)
N , the conditional expectation

E[W1|EC ] =
∫∞
u−ζ(c)

∫∞
−∞(x1 + z1)dH(z1)dG(x1)

N/[1−G(u− ζ(c))N ]

is constant as u → ∞, c ↓ 0, fixing u − ζ(c) = ℓ̄ (limit (⋆)). Similarly, since
Var(W1|EC) = E[W 2

1 |EC ] − E[W1|EC ]
2, the limit variance only depends on ℓ̄. So

the sign of β1 in this limit depends on Cov(W1, T |EC) > 0. Let t(x1, z1, u, c) be the
expected number of searches when the user clicks through if X1=x1 and Z1=z1. Then
Cov(W1, T |EC)=Cov(W1, t(X1,Z1, u, c)|EC). We derive a formula for t(x1, z1, u, c).

Assume X1 = x1 and Z1 = z1. By Lemmas 1 and 3, the user enters stage n iff
Xn + ζ(c) > Ωn = max(u,w1, w2, . . . , wn). In the limit u → ∞ and c → 0, and so
ζ(c) → ∞, the condition becomes Xn > u − ζ(c) = ℓ̄. By the Markov property of
order statistics (footnote 8), the distribution of the known factors of the remaining
N − 1 web sites is the same as N − 1 i.i.d. draws from cdf G(x )/G(x1) for x < x1. So
in limit limit (⋆), a randomly selected option in the subgame is clicked iff its known
factor exceeds ℓ̄, which occurs with chance [1−G(ℓ̄)/G(x1)]. Since each of the N − 1

options is independently clicked with chance [1−G(ℓ̄)/G(x1)], the expected number
of searches in the limit u→ ∞, c→ 0 is (N − 1)[1−G(ℓ̄)/G(x1)]. Fixing ℓ̄,

lim
c→0,u→∞

t(x1, z1, u, c) = 1 + (N − 1)[1−G(ℓ̄)/G(x1)] ≡ t̄(x1). (40)

Altogether, Cov(W1, T |EC) → Cov(X1 + Z1, t̄(X1)|EC) at the limit. Since X1 is
independent of Z1 even given EC , Cov(X1 + Z1, t̄(X1)|EC) = Cov(X1, t̄(X1)|EC).
Finally, Cov(X1, t̄(X1)|EC) > 0 as t̄(x1) strictly rises in x1 by (40). Altogether, the
coefficient β1 = Cov(W1, T |EC)/Var(W1|EC) > 0 as u→ ∞ and c→ 0. □
Proof of (b): As N explodes, the OLS estimate β̂2 converges in probability to
Cov(T,Z1|EC)/Var(Z1|EC). As X and Z factors are independent, the conditional

39



expectation of Z1 has cdf H under EC . All told, Var(Z1|EC)=Var(Z)>0 as N→∞.
If (X1,Z1) = (x1, z1), then the limit t̄(X1) of expected search times t(x1, z1, u, c) as

u→∞ and c→0 is constant in z1, by (40). As t(x1, z1, u, c) ≤ N − 1, the Dominated
Convergence Theorem implies that Cov(t(X1,Z1, u, c),Z1|EC) → Cov(t̄(X1),Z1|EC).
So β2 → Cov(t̄(X1),Z1|EC)/Var(Z) = 0, as X1 and Z1 are independent on EC . □

Claim D.6 If h(z) has a thin tail, then β3 has a non-negative limit given (⋆).

Proof: Let EP be the event that the user eventually purchases. By OLS, β3 =

Cov(T,X1|EP )/Var(X1|EP ), where Cov(T,X1|EP ) and Var(X1|EP ) are the covariance
and variance. Then β3 is non-negative provided Cov(T,X1|EP ) ≥ 0 in the limit (⋆).

The user clicks through if he buys, and buys if he clicks through and X1 +Z1>u.
So P ({X1+Z1 > u}∩{EP}) = P ({X1+Z1 > u}∩{EC}) =

∫∞
ℓ̄
[1−H(u−x1)]dG(x1)

N .
Since P (EP ) = 1− q = 1− π(u− ζ(c), c)N by (11), Bayes rule gives:

P (X1+Z1 > u|EP ) =

∫∞
ℓ̄
[1−H(u− x1)]dG(x1)

N

1− π(ℓ̄, c)N
=

∫ ∞

0

[
1−H(ζ(c)− s)

1− π(ℓ̄, c)N

]
dG(s+ℓ̄)N .

By (6)–(7), the limit as ζ(c) → ∞ as c→ 0 of the bracketed term in the integrand is

lim
ζ(c)→∞

1−H(ζ(c)− s)

1− [
∫∞
0
g(ℓ̄+ r)H (ζ(c)− r) ds+G(ℓ̄)]N

= lim
ζ(c)→∞

h(ζ(c)− s)

N
∫∞
0
g(ℓ̄+ r)h (ζ(c)− r) dr

by l’Hopital’s rule, since limζ(c)→∞[
∫∞
0
g(ℓ̄+r)H (ζ(c)− r) ds+G(ℓ̄)] = 1. In limit (⋆):

lim
c→0

P (X1 + Z1 > u|EP ) = lim
ζ(c)→∞

∫∞
0
G(s+ ℓ̄)N−1g(s+ ℓ̄)h (ζ(c)− s) ds∫∞

0
g(r + ℓ̄)h (ζ(c)− r) dr

. (41)

Write (41) as limζ(c)→∞E[G(S+ℓ̄)N−1], where the r.v. S has density g(s+ℓ̄)h (ζ(c)− s).
Since h has a thin tail, as ζ(c) → ∞ in the limit (⋆), h (ζ(c)− s1) /h (ζ(c)− s2) → 0

for s1 < s2 by Claim C.2, whence E[G(S+ℓ̄)N−1] → 1, and so P (X1+Z1>u|EP ) → 1.
In the limit (⋆), since limP (X1 + Z1 > u|EP ) = 1, we have Cov(T,X1|EP ) −

Cov(T,X1|{X1+Z1 > u}∩EP ) → 0. Next, {X1+Z1 > u}∩EP = {X1+Z1 > u}∩EC ,
as EP ⊂ EC , while {X1 + Z1 > u} ∩ EC implies {X1 + Z1 > u} ∩ EP , as the user
eventually purchases if he clicks through and the first website dominates the outside
option. So Cov(T,X1|{X1 + Z1 > u} ∩EP ) = Cov(T,X1|{X1 + Z1 > u} ∩EC), i.e.

limCov(T,X1|EP ) = limCov(T,X1|{X1 + Z1 > u} ∩EC) in the limit (⋆) (42)
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GivenEC , the expected unconditional search time T is the expectation of t(X1,Z1, u, c),
i.e. the mean number of searches when X1=x1, Z1=z1 and the user clicks through:

Cov(T,X1|{X1+Z1 > u}∩EC) = Cov(t(X1,Z1, u, c),X1|{X1+Z1 > u}∩EC). (43)

By equation (40), t(x1, z1, u, c) → t̄(x1) in limit (⋆), which also rises in x . Then
limCov(t(X1,Z1, u, c),X1|{X1+Z1>u},EC)=limCov(t̄(X1),X1|{X1+Z1>u},EC) ≥
0. So by (42)–(43), lim β3 = limCov(T,X1|EP )/Var(X1|EP ) ≥ 0 in the limit (⋆). □
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Online Appendix for
“Optimal Sequential Search Among Alternatives”
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A The Value Function
Claim A.1 As the search cost c rises, the value function Vn(Ωn) grows weakly steeper.

Proof: After the last draw, the terminal value function is VN(Ω) = Ω, and so the
claim is trivially true. Suppose the claim holds at stage n+1. If Ωn > w̄n+1, then the
searcher stops at stage n and V ′

n(Ωn) = 1. Thus V ′
n(Ωn) remains unchanged as c rises.

If Ωn < w̄n+1, then V ′
n(Ωn+) = Fn+1(Ωn)V

′
n+1(Ωn+) by (4). Since V ′

n+1(Ωn+) rises in
c, so does V ′

n(Ωn+). If Ωn = w̄n+1, then V ′
n(Ωn+) rises from Fn+1(Ωn)V

′
n+1(Ωn+) to

1 because w̄n+1 falls in c and V ′
n+1(Ωn+) ≤ 1 by Lemma 2. In all cases V ′

n(Ωn+) rises
in c and thus claim holds at n. Inductively, the claim is always true. □

By Lemma 2, the slope V ′
n(Ω) in (4) is the chance that the best-so-far Ω will be

eventually exercised. In the same spirit, now we show that the derivative of −Vn(Ω)
with respect to the search cost c equals the expected number of remaining searches.

Claim A.2 (Pre-Query Value Differentiability) The value function Vn(Ωn) at
period n is differentiable in the search cost c when the stage n best option so far
Ωn ̸= w̄j+1 for j ∈ {n + 1, . . . , N}. The derivative −∂Vn(Ωn)/∂c is the expected
number of remaining searches.

Proof: Assume Ωn ̸= w̄j+1 = xj+1+ ζ(c) for j ∈ {i, . . . , N}. After the last draw,
the terminal value function is VN(ΩN) = ΩN . Since ∂VN(ΩN)/∂c = 0, all claims are
true at stage N . Suppose the statements hold for stage n+1. At stage n, if Ωn > w̄n+1

then the searcher stops searching. By (4), we have Vn(Ωn) = Ωn on [w̄n+1,∞) and so
∂Vn(Ωn)/∂c = 0. If Ωn < w̄n+1, then the searcher continues to stage n + 1. In this
case, −∂Vn(Ωn)/∂c = 1 − [∂Vn+1(Ωn)/∂c]Fn+1(Ωn) −

∫∞
Ωn
[∂Vn+1(z)/∂c]dFn+1(z) by

(4). The integral exists because ∂Vn+1(z)/∂c exists except at finite number of points.
The value of −∂Vn(Ωn)/∂c equals 1 plus the expected number of remaining searches.
Inductively, the statement holds for all stages. □

Next, we show that the ex ante value V is differentiable in u and c as long as X
is non-degenerate. Consider the stage after the realization of x⃗ ≡ {x1, x2, . . . , xN} but
before the searcher explores any option. Let V0(u, c, x⃗) be the searcher’s expected

1



payoff. By Lemma 2 and Claim A.2, V0(u, c, x⃗ ) is differentiable in u and c except
when u = xj + ζ(c) for any j ∈ {1, . . . , N}. The searcher’s ex ante payoff before
the realization of the known factors is V(u, c) = E[V0(u, c, X⃗ )] where the expecta-
tion is taken over X⃗ . Both ∂V(u, c)/∂u and ∂V(u, c)/∂c exist as the cases where
∂V0(u, c, X⃗ )/∂u and ∂V0(u, c, X⃗ )/∂c do not exist are of measure zero.

The slope ∂V0(u, c, x⃗ )/∂u is the quitting chance given x⃗ by Lemma 2. Simi-
larly, −∂V0(u, c, x⃗ )/∂c is the expected search time given x⃗ by Claim A.2. Thus (16)
is true, namely ∂V(u, c)/∂u = q and ∂V(u, c)/∂c = −τ . □

B Hazard Rates
The initial quitting chance q0 = G(u − ζ(c))N rises in u and c because ζ ′(c) < 0 by
(15). Later ex ante quitting chances qn ≈ 0 for any 1 ≤ i < N , for all small enough
c ≥ 0 and large enough c < ∞, because the searcher never stops at an intermediate
stage n when search is very cheap or prohibitively costly.

Claim B.1 The stage n quitting chance qn is single-peaked in c and u, for 1 ≤ n < N ,
and qN falls in c.

Proof: Consider (10). First, G(u − ζ(c)) is log-concave in ζ(c), since G is log-
concave. Also, since we have assumed that H and g are log-concave, δ(u− ζ(c), c) =∫∞
0
H (ζ(c)− r) g(r+u−ζ(c))dr is log-concave in ζ(c) by Prekopa’s Theorem.23 since

log-concavity is preserved under multiplication, qn is log-concave in ζ(c) and thus is
single-peaked in ζ(c) for all 1 ≤ n < N . Because ζ ′(c) < 0, qn is single-peaked
in c. Similarly, G(u − ζ(c)) and δ(u − ζ(c), c) are also log-concave in u, thus qn
is single-peaked in u for all 1 ≤ i < N . Finally, (6) implies that δ(u − ζ(c), c) =∫∞
u−ζ(c)

H (u− r) dG(r) falls in c and u, and thus so too does qN = δ(u− ζ(c), c)N . □

Claim B.2 The interim striking hazard rate K̄n(xn, c) rises in c and xn.

Proof: Since ζ ′(c) < 0, the integrand of (28) rises in c, since the bracketed terms
do. As the integrand in (28) is h(ζ(c)) if zn = ζ(c), its partial derivative in c from the
Fundamental Theorem of Calculus is ζ ′(c)h(ζ(c)). This cancels with −∂H(ζ(c))/∂c

in differentiating K̄n(xn, c) = 1−H(ζ(c)) + A(xn, c). So K̄n(xn, c) rises in c.
23By Prekopa’s Theorem, log-concavity is preserved under partial integration. See An (1997).
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Next, K̄n(xn, c) rises in xn. It suffices that A(xn, c) rises in xn. To this end,

A(xn, c)=

∫ ζ(c)

u−xn

h(zn)

[∫∞
0

H(zn−t)
H(ζ(c)−t)

H(ζ(c)− t)g(t+ xn)dt∫∞
0
H(ζ(c)− t)g(t+ xn)dt

]n−1[
G(xn + zn − ζ(c))

G(xn)

]N−n

dzn.

changing variables r= t+xn in (28). The first bracketed term is E[H(zn−T )/H(ζ(c)−
T )], for the new r.v. T with density H(ζ(c)− t)g(t+ xn). As g is log-concave, T falls
stochastically in xn. The first bracketed term rises in xn as H(zn − T )/H(ζ(c) − T )

falls in T , as H is log-concave and zn < ζ(c). The second bracketed term rises, given
G log-concave and zn < ζ(c). As the integral support rises in xn, so does A(xn, c). □

Claim B.3 (Striking Hazard Rate) Kn rises in c and falls in u .

Proof: First, Kn = EXn [K̄n(Xn, c)] rises in c as K̄n(xn, c) rises in xn and c by Lemma
B.2 and Xn rises stochastically in c by Lemma 4: For the direct effect of greater search
costs c and selection bias on xn reinforce.

Second, as g(s+x )/g(x ) falls in x by log-concavity, and
∫∞
s
H(ζ(c)−t)g(t+x )dt is

log-submodular in (s, x ) by log-concavity of H and g, Claim B.6’s bracketed integral
falls in Xn. As Xn stochastically rises in u (Lemma 4), Kn falls in u. □

Claim B.4 (Recall and Quitting Hazard Rate) RN
n falls and QN

n rises in u.

Proof: As B(x , n) falls in x by Claim B.7, RN
n = EXn [B(Xn, n)] falls in u because

Xn rises stochastically in u by Lemma 4.
Recall that Sn = Qn + Kn +Rn. Since Xn stochastically rises in u by Lemma 4,

the stopping hazard rate Sn rises in u by (22). Since Sn rises in u and Kn and Rn

fall in u, by Claims B.3 and B.4, Qn rises in u. □
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