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Abstract

This paper systematically analyzes and enriches the observational learning

paradigm of Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992).

Our contributions fall into three categories.

First, we develop what we consider to be the 'right' analytic framework for

informational herding (convergence of actions and convergence of beliefs, using

a Markov-martingale process). We demonstrate its power and simplicity in

four major ways: (1) We decouple herds and cascades: Cascades might never

arise, even though herds must. (2) We show that wrong herds can arise iff the

private signals have uniformly bounded strength. (3) We determine when the

mean time to start a herd is finite, and show that (absent revealing signals) it is

infinite when a correct herd is inevitable. (4) We prove that long-run learning

is unaffected by background 'noise' from crazy/trembling decisions.

Second, we explore a new and economically compelling model with multiple

types, and discover that a 'twin' observational pathology generically appears:

confounded learning. It may well be impossible to draw any further inference

from history even while it continues to accumulate privately-informed decisions!

Third, we show how the martingale property of likelihood ratios is neatly

linked with the stochastic stability of the learning dynamics. This not only al-

lows us to analyze herding with noise, and convergence to our new confounding

outcome, but also shows promise for optimal experimentation.
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1. INTRODUCTION

Suppose that a countable number of individuals each must make a once-in-a-lifetime

binary decision — encumbered solely by uncertainty about the state of the world. As-

sume that preferences are identical, and that there are no congestion effects or network

externalities from acting alike. Then in a world of complete and symmetric information,

all would ideally wish to make the same decision.

But life is more complicated than that. Assume instead that the individuals must

decide sequentially, all in some preordained order. Suppose that each may condition his

decision both on his (endowed) private signal about the state of the world and on all his

predecessors' decisions, but not their private signals. The above simple framework was

independently introduced in Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch

(1992) (hereafter, simply BHW). Their perhaps surprising common conclusion was that

with positive probability a 'incorrect herd' would arise: Despite the surfeit of available

information, after some point, everyone can make the identical less profitable decision.

In this paper, we systematically analyze and enrich the informational herding paradigm,

as it so happens to offer both simple lessons and deeper insights into rational learning.

Our embellishment upon the herding story is best motivated by means of the following

counterfactual. Assume that we are in a potential herd in which one million consecutive

individuals have followed suit on some action, but suppose that the very next individual

deviates. What then could Mr. one million and two conclude? First, he could decide that

his predecessor had a more powerful signal than everyone else. To capture this, we shall

generalize the private information beyond discrete signals, and admit the possibility that

there is no uniformly most powerful signal. Second, he might opine that the action was

irrational or an accident. We shall thus add noise to the herding model. Third, he possibly

might decide that different preferences provoked the contrary choice. On this score, we

shall consider the herding model with multiple types. Here, we find that herding is not the

only possible 'pathological' outcome: We may well converge to a situation where history

offers no decisive lessons for anyone, and everyone must forever rely on his private signal!

Here is an overview of the paper, and how we view our contributions.

1. Proper Analytic Framework; Nonrobustness of Past Results; Extensions.

• The 'Right' Theory. Our analysis is focused through the two lenses of convergence

of beliefs (learning) and convergence of actions (herding). As such, two stochastic processes

constitute the building blocks for our theory: (i) the public likelihood ratio is a martingale

given the state, and (u) the vector (action taken, likelihood ratio) a Markov chain. We
prove the power and simplicity of this informational herding framework in four major ways:



The Markovian aspect of the dynamics allows us to drastically narrow the range of

possible long run outcomes, as we need only focus on the ergodic set. This set is wholly

unrelated to initial conditions, and depends only on the transition dynamics of the model.

By contrast, the martingale property affords us a different glimpse into the long run

dynamics, tying them down to the initial conditions in expectation. As it turns out, this

allows us to eliminate from consideration the not inconceivable elements of the ergodic set

where everyone entertains entirely false beliefs in the long run.

• Bad Herds? Rational learning is fruitful because Bayes-updating of any space of

private signals from a common prior yields private beliefs that are informative of the true

state — a simple corollary of our no introspection property. We focus on the role played

by the support of the private beliefs: Incorrect herds can develop exactly when individuals

have bounded private beliefs, i.e. there do not exist arbitrarily strong private signals. Intu-

itively, whenever individual private signals are uniformly bounded in strength, history has

the potential to mislead everyone: Eventually even the most doctrinaire individual dare

not quarrel with the conclusion of histories that aggregate enough information.

With unbounded private beliefs, learning is complete. Soon enough, a wise enough

doctrinaire individual will appear whose contrary action will radically shift public beliefs

and overturn any would-be incorrect herd. Yet by our overturning principle, this logic

cannot be turned on its head to rule out correct herds. 1 The admission of arbitrarily

tenacious individuals is largely a modelling decision. For it not only provides us with a

richer model than Banerjee (1992) and BHW, and opens lines of inquiry that make no sense

in their framework, but also sheds critical light into the exact failure of incomplete learning:

For as we approach this idealized extreme, bad herds become vanishingly implausible.

• Cascades? BHW introduced the colorful terminology of a cascade for an infinite

train of individuals acting irrespective of the content of their signal. Yet we argue that the

label 'cascades literature' is malapropos. For cascades are the exception and not the rule

outside BHW's discrete signal world. All but one (rather contrived) example in this paper

attests to this fact. With generic signal distributions, individuals always eventually settle

on an action (a herd), but no decision is ever a foregone conclusion (a cascade)! With these

two notions decoupled, the resulting analysis is much richer — for it is no longer so clear

why herds must arise. This occurs, we argue, because public beliefs must converge (as per

usual), and since belief convergence implies action convergence. This simple insight (the

overturning principle) into herding is true because contrary actions radically swing beliefs.

• Expected Time To Herd. We characterize when herds arise in finite expected

time. We find that what matters is not how fast the truth is learned but rather how slowly

1 The link between unbounded support beliefs and complete learning was implicit in Smith (1991).



error is rooted out: There must be enough contrarians to overturn any temporary herd

fast enough. Our surprising discovery is that while learning is complete with unbounded

beliefs, the correct herd always requires infinite mean time to start in some state!

• NOISE. That a single individual can 'overturn the herd' is the key analytic insight

into herding. So it is only natural to undermine the impact of contrarians by adding noise.

Counterintuitively, even with a constant inflow of crazy/trembling individuals, complete

learning still obtains. Everyone (sane) eventually learns the true state of the world.

Besides definitively resolving and further exploring informational herding, the above

results set the context needed for what are our most striking and innovative findings below.

2. New Herding Economics: Confounding with Multiple Preference Types.

We next relax a critical (if under-appreciated) premise of the original herding results,

namely that all individuals have the same preferences. Surely this is anything but an

apt description of the world. Multiple types offers a parallel reason why the actions of

isolated individuals need not greatly matter — but with much richer consequences. Let's

fix ideas with a hopefully familiar example. Suppose that on a highway under construction,

depending upon how the detours are arranged, those going to Houston should merge either

right (in state R) or left (in state L), with the opposite for those headed toward Dallas.

If one knows that 70% are headed toward Houston, then absent any strong signal to the

contrary, Dallas-bound drivers should take the lane 'less traveled by'. This yields two

herding outcomes: 70% left or 70% right. But another rather subtle possibility may arise.

For as the chance q that observed history accords state R rises from to 1, the chance

r(q) that a Houston driver merges right gradually increases from to 1, and conversely

for Dallas drivers. If for some q, cars are equilikely in states R and L to merge right, or

r«(?) = rL{q), then no inference can be drawn from additional decisions, and all learning

stops! Of course, whether such a fixed point exists is far from obvious, and even if so, why

need we converge there? The surprising content of Theorem 9 is that for non-degenerate

specifications, such a 'confounding' outcome does exist, and furthermore, dynamics will

converge upon it with positive probability — even with arbitrarily strong private signals!

3. Likelihood Ratios as Martingales =*> Exponentially Fast/Stable Learning.

The above convergence result and the deduction of 'rational herds' with noise both de-

pend on the rate of belief convergence. With noise, the inflow of rational contrarians may

be forever choked off without entering a cascade if learning is exponentially fast. Such

rapid belief convergence also implies the local stochastic stability of learning needed for

confounded learning to arise with multiple types. The common ingredient is a simple link

we have found between the martingale character of the likelihood ratio and the exponential

stability of learning: This neat result holds if near a fixed point, posterior beliefs aren't



(degenerately) equally responsive to prior beliefs for every action taken. We feel this tech-

nique has broad applicability beyond the herding paradigm, into optimal experimentation.

Section 2 outlines the benchmark model and some preliminary results. Section 3 pro-

vides the associated action and belief convergence results; noise is added in section 4. Our

new model with heterogeneous preferences is explored in section 5. A host of needed (or

related) results and proofs are appendicized, including a convergence criterion for Markov-

martingale processes, and a new local stability result for stochastic difference equations.

2. THE STANDARD MODEL

2.1 Some Notation

An infinite sequence of individuals n = 1,2,... takes actions in that exogenous order.

Everyone observes the ordered actions of all predecessors. A background probability space

(Q, £, v) captures all uncertainty in our model. First, the action payoffs are random: There

are 5 = 2 possible states of the world (or just states), s = H ('high') and s = L ('low').

Formally, Q is partitioned into events QH U f2
L

, called H and L. Let the common prior

belief be v{H) = v(L) = 1/2.
2 Our results extend to any finite number of states, but at

significant algebraic cost and dubious conceptual gain (see our 1996 working paper).

Everyone chooses from a finite action set (am , m£M), where Ml = {1, . .
.

, M}. One

might think of investors deciding whether to 'invest' or 'decline' an investment project of

uncertain value. Action am pays off us
(am ) in state s £ {H, L}, the same for all individuals,

and everyone acts so as to maximize his expected payoff. We assume that WLOG no

action is weakly dominated, and at least two undominated actions exist. Before selecting

an action, an individual observes the entire action history profile, loosely denoted h.

Individual n receives a private random signal, an 6 E, about the state of the world.

Conditional on the state, {an } are i.i.d., and drawn according to the probability measure

)i
s

in state s e {H, L}. 3 To ensure that no signal will perfectly reveal the state of the

world, we shall insist that [i
H and [i

L be mutually absolutely continuous (a.c.).
4 Thus,

there exists a positive, finite Radon-Nikodym derivative g = d\x
L
ld\i

H
: E —>• (0, oo) of fi

L

w.r.t. fi
H

. And to avoid trivialities, we shall rule out g = 1 almost surely,
5 so that fi

H and

\i
L are not the same measure — i.e. some signals are informative about the state.

2Common priors is standard (Harsanyi (1967-68)), and a fiat prior WLOG (see our working paper).
3So <7n : ft — E is a random variable; /x

s = n"n = vs °o~ x
, where measure u° conditions v on event ft".

"See Rudin (1987). Measure \i
L

is a.c. w.r.t. fj," if fJ,

H {S) = => fi
L
(S) = VS G S, the a-algebra on

E. By the Radon-Nikodym Theorem, a unique g € L}{n
H

) exists with fi
L (S) = Js gdfi

H
for every S G S.

5With fi
H

, /j,

L mutually a.c, 'almost sure' assertions are well-defined without specifying the measure.



2.2 Private Beliefs

The second source of uncertainty in our model is private information. Given signal

a € S, an individual uses Bayes' rule to arrive at what we shall refer to as his private belief

p(o) = \/(g(o) + 1)6 (0, 1) that the state is H. Conditional on the state, private beliefs

are i.i.d. across individuals because signals are. In state s € {H, L), p is distributed with

a c.d.f. Fs on (0, 1). The distributions FH and FL
are subtly linked. Since fi

H and \i
L

are

mutually absolutely continuous, so are the associated distributions FH and FL
. Thus there

exists a Radon-Nikodym derivative / = dFH/dFL
, which reduces to f

H
{p)/f

L
{p) when

each F s has a density. The next result neatly illustrates the folk wisdom that posterior

beliefs are sufficient for one's information, and ultimately drives all learning that occurs.

Lemma 1 (a) (No Introspection Condition) The derivative f = dFH/dFL of private

belief c.d.f. s FH , FL
satisfies {it): f(p) = p/(l—p) almost surely inp € (0, 1). Conversely,

if (-^r) then FH , FL
arise from updating a common prior with some signal measures p,

H
,
\i
L

.

(b) The difference FL
(p) — FH {p) is nondecreasing or nonincreasing as p ^ 1/2.

(c) (Beliefs are Informative) FH (p) < FL
(p) except when both terms are or 1.

Proof: If the individual further updates his private belief p by asking of its likelihood in

the two states of the world, he must learn nothing more. So, p = f(p)/[l+f(p)], as desired.

Conversely, given f(p) = p/{\ — p), let a have distribution F s
in state s, s E {H, L).

Part (a) implies part (b), and is strict when p e supp(F) \ {1/2}.
6 Hence (c) follows.

Thus, the conditional distribution functions FH and FL can be taken as the stochastic

primitives of the model. Notice that Lemma 1(a) implies that they have a common support,

say supp(F), equal to the range of p(-) on E. The structure of co(supp(F)) = [b,b] C [0, 1]

plays a major role in the paper. Note that < 6 < 1/2 < 5 < 1 since
fj,

L and p,
H are

distinct, and FL
(b) = and FH (b-) = 1 as there are no perfectly revealing signals. We

call the private beliefs bounded if < b < b < 1, and unbounded if co(supp(F)) = [0, l].
7

For clarity, we introduce two leading examples which will be progressively embellished.

• Unbounded Beliefs Example. Let \x
h have probability density g

L
(a) = 2 - 2a,

and n
H

the density g
H
{o) = 2a (left panel of figure 1). So g(a) = g

L
{cr)/g

H
(a) = (l-a)/a,

yielding p(a) = a, and thus the simple formulae FH (p) = p
2 < FL

(p) = 2p — p
2

.

• Bounded Beliefs Example. Next, let n
H be Lebesgue (uniform) measure on [0, 1],

and choose [l
l with Radon-Nikodym derivative g(a) = |^Q = 3/2 - a on [0, 1]. Then

p{a) = l/(g(o) + l) = 2/(5-2a). Note how p maps [0,1] injectively onto [b,b] = [2/5,2/3],

6The support of a measure is the smallest closed set of full measure; co(A) is the convex hull of set A.
7To exhaust all possibilities we should also consider supports that are bounded above and not below,

etc., but this exercise in generality yields no new insights.



9
H
{°)

Figure 1: Signal Densities. Graphs for the unbounded (left) and bounded (right) beliefs examples.

Observe how, for instance, signals near are very strongly in favor of state L, as in Lemma 1.

uL (ai)
uL (a2 )

uL (a3 )

f = fi f2 f3 =l
Figure 2: Payoff Frontier. The diagram depicts the (expected) payoff of each of three actions as

a function of the posterior belief r that the state is H. The individual simply chooses the action yielding

the highest payoff. Action a? is an insurance action, while actions ai and 03 are extreme actions.

with p(a) < p <£> 2/(5 - 2a) < p <& (5p - 2)/2p > a. Here, the support of FH , FL
is

bounded, and the distribution of p € [2/5, 2/3] is FH (p) = /i
H

[0, (5p-2)/2p] = (5p-2)/2p

in state # and in state L:

5p-2

^L
(p) = / «W da= f

iP

\-ada= \{Zo - a2

)

Jp(cr)<p JO Z l

2" (5p-2)(p + 2)

,
Sp^

2.3 Action Choice

Given a posterior belief r € [0, 1] in state H, the expected payoff of choosing action a

is ruH (a) + (1 — r)uL (a). Figure 2 depicts the content of the next (standard) result.

Lemma 2 The interval [0,1] partitions into subintervals, or action basins, I\,...,Im

overlapping at endpoints only, such that action am is optimal with posterior belief r 6 Im .

Proof: As noted, the payoff of each action is a linear function of r. But by assumption,

action am is strictly best for some r; therefore, there must exist a single open subinterval

of [0, 1] where it strictly dominates all other actions. That this is a partition follows from

the fact that there exists at least one optimal action for each posterior r € [0, 1].

We now WLOG order the actions so that am is optimal exactly when the posterior

r G [fm_i,fm ]
= Im , where = f < f\ < • < fM = 1. We employ the tie-breaking



rule
8 that individuals take action am (versus am+ i) at r = fm . The extreme action au

(resp. a,\) is optimal when one is certain that the state is H (resp. L), while insurance

actions 02, . .
.

, om-i are respectively optimal as confidence shifts from state L to state H.

• Examples Cont'd. In our running examples, the two actions may be a± = Decline

and a 2
= Invest. To Invest yields payoff u in state H and —1 in state L; to Decline from

investing yields payoff in both states. Since, by assumption, action ai is undominated,

we posit u > 0. Indifference prevails when = fu — (1 — f), so f = 1/(1 + u).

2.4 Individual Learning

Individual decision rules map from private beliefs and history to own actions. In a

Bayesian equilibrium, everyone knows all decision rules and the common prior,
9 and can

compute the ex ante chance 7r
s
(h) of any history h in each state s. This yields the public

likelihood ratio ((h) = n1 (h) / it
11
(h) that the state is L versus H, and the public belief

q(h) in state H, i.e.

So q(h) is the posterior ensuing from a neutral private belief and history observation h.

A final application of Bayes rule yields the posterior belief r (that the state is H) in

terms of the public history — or equivalently the likelihood ratio ((h) — and the private

belief p:

p ir
H
(h) p 1

pirH (h) + {l-p)irL {h) p+(l-p)e{h) i + l=t£(h)
(1)

Lemma 3 (Private Belief Thresholds) Given history h, there are M + 1 thresholds

= po(^) < Pi{h) < . . . < pM{h) — 1, such that am is chosen iff the private belief satisfies

pe (pm-i(h),pm (h)], where

Pm{h) 7

This is true given (i) the tie-break rule, (ii) the RHS of (1) is strictly increasing in p, and

(Hi) the reformulation of (1) as posterior odds (1 — r)/r equal private odds (l—p)/p times

the likelihood ratio (.(h). Note that if pm_i(h) = pm (h) at some h, then am is never chosen.

Since the likelihood ratio is informationally sufficient for the history, we suppress the

explicit dependence ((h), and write pm (() instead o(pm (h), where ( h-> pm (() is increasing.

• Examples Cont'd. In both examples, (2) yields p(() = (/(u + ()\if= 1/(1 + u).

8 For generic models, this choice does not matter. Even when it does change the probabilistic course of

nongeneric models, the tie-breaking rule does not change the statement of any of our theorems.
9We assume common knowledge of rationality. Section 4 partially backs away from this.



Optimal action am :

£g(a)elm =

Action a\

1 - rm-i

Action am is taken with chance

p(m\s,£) in state s G {H, L} Action aM £
p(M\LJ)

p(M\H,£)
<p(M,£)

Figure 3: Individual Black Box. Everyone bases his decision on both the public likelihood ratio

I and his private signal <r, resulting in his action choice am and a likelihood ratio to confront successors.

One takes action am iff one's posterior likelihood lies in the interval Im , where I\ , . .
. , Im partition [0, oo]

2.5 Corporate Learning as a Markov-Martingale Process

We let tn and qn , respectively, be the public likelihood ratio and belief after Mr. n

chooses action mn ,

10 with £q = 1 and go = 1/2 (null initial history). Signals, and thereby

actions, are random, and so (£n) =̂1 and (<7n)£Li are stochastic processes, described by

p(m\s,£) = Fs

(pm (£)) - F s

(pm^(£))

<p(m, £) = £p(m\L, £)/p{m\H, £)

(3)

(4)

Here, p(m\s, £) is the chance that a (rational) individual takes action om ,
given the public

likelihood £, and the true state s e {H, L}. Faced with £n , if individual n takes action mn ,

we move to £n+ i
= ip(mn , £n ). Figure 3 schematically summarizes this transition.

Our insights are best expressed by considering (mn ,£n ) as a time homogeneous Markov

process on the state space M x [0, oo). Given (mn ,£n ), (3) and (4) imply that the next

state is (mn+i,(p(mn+i,£n)) with probability p(mn+i\H,

£

n ) in state H. In principle, such

a two-dimensional process with continuous state variables could be very ill-behaved, and

possibly chaotic. But Lemma 5 attests to how well-behaved is the likelihood process.

The next result is quite standard (but for completeness, is proven in the appendix).

Lemma 4 (The Unconditional Martingale) The public belief (qn ) is a martingale,

unconditional on the state of the world.
11

This martingale describes the forecast of subsequent public beliefs by individuals in the

model, who do not know the true state of the world: Prior to receiving his signal, individual

n's expectation of the public belief that will confront his successor is the current one. But

for our purposes, an unconditional martingale does not tell us all we want to know about

convergence. For that, we will condition on the state of the world, and that will render

10Or equivalently, action amn . Throughout the paper, m will denote actions, and n individuals.
11We really ought to specify the accompanying sequence of tr-algebras to the stochastic process; however,

these will be suppressed because they are simply the ones generated by the process itself.



the public belief (qn ) a suimartingale in state H (and a supermartingale in state L), i.e.

E[qn+ i | H,qi,... ,qn ]
> qn - Essentially, the public beliefs are expected to become weakly

more focused on the true state of the world — a result much weaker than we seek. For

the modeller, a much more useful martingale is one that conditions on knowledge of the

state of the world, namely, the likelihood process (£n ) = ((1 — qn )/q.n)-
n

Lemma 5 (Likelihood Ratios as a Conditional Martingale) Assume state H.

(a) The stochastic process of likelihood ratios (£n ) is a martingale conditional on state H.

(b) The likelihood ratio process (£n ) converges almost surely to a r.v., l^ = limn-^^,

with supp(^oo) = [0,oo). So fully incorrect learning (£n —» 00) almost surely cannot occur.

Proof: Given the value of £n , the conditional expectation of £n+ i in state H is

E[£n+1
I

H,£u ...£n ]
= J2 P(m\H,Q £n j^%j\ = 4 ^ P{™\L,£n ) = L

Since the likelihood ratios are non-negative random variables, the result follows from the

Martingale Convergence Theorem. (See Breiman (1968), Theorem 5.14.) Or, since the

stochastic evolution of (£n ) is mean-preserving, convergence to any dead wrong belief a.s.

cannot occur: The odds against the truth are not permitted to explode. 13

Easley and Kiefer (1988), and others, underscore that unlike statistical learning where

information may well accrue at a 'constant rate', complete learning is not at all a foregone

conclusion in a economic model of costly experimentation. When information has a price,

complete learning is generally deemed too expensive. One might expect that the resulting

pathological outcomes to the learning dynamics persist this observational learning setting.

Guiding Questions: 1. Is there a herd, or action convergence: Does the first coordinate

of the process (mn ,£n ) settle down? If so, on action o^? And in finite expected time?

2. Belief convergence obtains — the second coordinate of the Markov process (mn ,£n )

converges — since t^ exists by Lemma 5. But must a cascade arise, where everyone takes

action am irrespective of signal realizations — p(m\H,£n ) — p(m\L,£n ) — 1 for some m
after some stage n? Or perhaps only a limit cascade on am will arise, i.e. p(m\H, £n )

—> 1

as n -> 00. And is learning complete — or do beliefs converge to the truth, i.e. £n -> 0?

Otherwise, learning is incomplete (beliefs not eventually focused on state H).

3. What is the link between action and belief convergence? The rough logic of BHW, valid

with a discrete signal space, is: (i) cascades must occur, and (ii) cascades imply herds, and

12
See, for instance, Doob (1953), section II. 7.

13Another proof of this fact uses public beliefs (see, for instance, Bray and Kreps (1987)).



thus (Hi) herds occur. The second step is irrefutable: In a cascade on action am , Mr. n

ignores his signal and takes am , revealing no new information, and so £n+ i
= £n . So the

cascade still obtains at stage n + 1, as private belief thresholds are unchanged by (2). So

p(m\H, £n+\) = 1 too.

We shall prove that (i) is not robust: Cascades generically needn't arise — and cannot

with unbounded beliefs. This leads to a tougher question: Do limit cascades imply herds?

3. THE MAIN RESULTS

In this section, we first characterize the limit t^. We then prove that this convergence

of beliefs implies convergence of actions, i.e. limit cascades imply that herds eventually

occur. We conclude by discussing the speed at which beliefs converge, and the intertwined

issue of whether the mean time to entry into a herd is finite.

3.1 Belief Convergence

We first must understand exactly why individuals might wish to ignore their signals.

Lemma 6 (Action Absorbing Basins) For each action am , there is a possibly empty

interval Jm = {£ |
supp(F) C \pm-i(£),pm(£)]} C Im C [0,oo], such that if the public

likelihood ratio £ £ int (Jm ), then the posterior likelihood ratio £g(a) G Im almost surely in

private signals a. Action am is then taken almost surely, and £ is unchanged. Also,

(a) With bounded private beliefs, J\ = [£, oo] and Jm = [0, £] for some < £ < £ < oo;

(6) With unbounded private beliefs, Jm = {0}, Ji = {oo}, and all other basins are empty.

The appendicized proof is intuitive: With bounded private beliefs, the posterior odds are

only boundedly far from £. So once £ is sufficiently near or oo or perhaps even in favor of

an insurance action, all private signals must lead to the same action. But with unbounded

beliefs, every public likelihood £ G (0, oo) will be swamped by some mass of private signals.

Remarks. 1. The absorbing basins are inversely ordered, or Jm2 <C Jmi iff m2 > mi.

2. The lemma asserts that to each 'extreme action' corresponds an action absorbing basin.

But Jm 7^ is also possible for an 'insurance' action am when beliefs are bounded. For

instance, take uH (ai) = uL (a3 ) = 1, uL (a\) = uH (a3 ) = 0, and u# (02) = UL{a2 ) = 1 — e.

Then the insurance action a2 has an action absorbing basin for small enough e > 0.

3. By rearranging an expression like (2), one can show that £ is in Jm precisely when

_i ' mfm-^b + (i-b)£
and

5 + (i-5)^
f!

10



J2 2u/Z 2u Ji

Figure 4: Continuations and Absorbing Basins. Continuation functions for the examples:

unbounded private beliefs (left), and bounded private beliefs (right). By the martingale property, the

expected continuation lies on the diagonal. The stationary points are where both arms hit the diagonal

(impossible here), or where one arm is taken with zero chance {(. = in the left panel; I = 2u/2> in the right).

So, an action absorbing basin is larger the smaller is the support [b,b], and the larger is

the interval [fm_i,fm]. Only extreme action absorbing basins exist for large enough [b,b].

• Unbounded Beliefs Example Cont'd. Private beliefs p e (0, 1) are distributed

as FH (p) = p
2 and FL

(p) = 2p—p2
. So supp(F) = [0, 1], and private beliefs are unbounded;

the basins collapse to the extreme points, J\ = {oo}, Jm = {0}. With our two actions,

we have p = £/(u + £), where u > 0. Thus we let p(l\H,£) = £
2 /{u + £)

2
, and p(l\L,t) =

£{£+ 2u)/(u + £)
2

. We now get <p(lj) = £+2u and ip(2J) = u£/(u + 2£), shown in figure 4.

• Bounded Beliefs Example Cont'd. Here, FH (p) = (5p - 2)/2p and FL
(p) =

(5p - 2)(p + 2)/8p
2

for p 6 [2/5, 2/3]. With p = £/(u + £), active dynamics occur when

£ € (2u/3, 2u). For £ < 2u/3, we have p(l\H, £) = p(l\L,£) = 0, i.e. action a2 is taken a.s.,

and thus its absorbing basin is J2 = [0, 2u/3]. For £ > 2u, we similarly find Jx
= [2u, oo].

For£<E (2u/3,2u)wehavep(l\H,£) = (2>£-2u)/2£ and p(l\L, £) = {3£-2u)(3£ + 2u)/8£2
.

By the martingale property, <p(l, £) = u/2 + 3£/4 and ip(2, £) = u/2 + £/4. (See figure 4.)

We now argue that limit cascades must occur: Dynamics must tend to one of the basins.

Theorem 1 (Limit Cascades) The likelihood ratio process £n

variable £<*> has support J = Jy U • • • U Jm, the absorbed set.

£(X> , and the random

The appendicized proof is (we feel) intuitive. Theorems B.l-2 precisely characterizes £00-.

Any point £ e supp(^oo) must be stationary for the Markov process, i.e. either an action

doesn't occur (p(m\£) = 0) or it teaches us nothing (<p(m,£) = £). If at least two actions

are taken in the limit, then the least one is taken with greater chance in state L than state

H, simply because beliefs are informative (Lemma 1(c)). This will violate stationarity.

Theorem 2 (Long-run Learning: Complete and Incomplete) Assume state H.

(a) With bounded private beliefs, if£ £ JM , then with positive chance i^ G JX U- -UJm-i-

11



(b) With unbounded private beliefs, £n —> almost surely.

Proof: For (a), if £& E J\ with positive chance, we are done. Otherwise, if £«, ^ Ji a.s.,

then (£n ) is uniformly bounded above by £, the infimum of J\, introduced in Lemma 6. By

Lebesgue's Dominated Convergence Theorem, the mean of (£n ) is preserved in the limit, i.e.

E[£oo] = £o, the initial ratio. So, if £ > £ it cannot be the case that supp(4o) CJM = [0,^].

(b) Theorem 1 asserts £& £ J a.s. By Lemma 6, with unbounded beliefs J — {0} U {+oo},

while Lemma 5 proves supp(£00 ) C [0, oo) if the state is H.

To underscore how nonintuitive is this conclusion, notice that this is one situation

where strict inequality holds in Fatou's Lemma, or 1 = limn_>0O E[£n ] > E^iuvn^^ £n ]
= 0,

and so (£n ) must be unbounded. While the process (£n ) occasionally gets arbitrarily large,

corresponding to arbitrarily long trains of individuals choosing the least optimal action,

the longer is the train, the less likely it is to occur. On balance, the Theorem 2 tells us that

all such trains must almost surely come to an end. For a classic analogy to the behavior of

(£n ), think of the behavior of a driftless random walk (or Brownian motion) starting at 1

with an absorbing barrier at 0. With probability one, it eventually hits and is absorbed.

Still, this is an arresting result, on two counts.

Puzzle # 1. Why can't individuals eventually be wholly mistaken about the state of

the world? For as noted in section 2, convergence towards totally incorrect beliefs appears

self-enforcing. But the martingale convergence theorem ruled out that limit.

Puzzle # 2. Why complete learning? Why aren't correct herds periodically broken

up (just as incorrect herds are)? Couldn't beliefs be ever cycling betwixt confidence in H
and L, so that the ergodic distribution assigns weight to non-stationary beliefs? It is here

that the martingale convergence theorem succeeds where Markovian arguments fail, and

establishes that beliefs must eventually settle down: Limit cycles cannot occur. Note that

the analysis of BHW — which did not appeal to martingale methods — only succeeded

because their stochastic process necessarily settled down in some (stochastic) finite time.

3.2 Action Convergence

Suppose a putative herd has begun: A string of individuals has taken the identical

action, but a cascade has not yet begun. If someone then acts in a contrary fashion, his

successors have no choice but to concede the strength of his signal, thus sharply revising

the public belief. We say that the putative herd has been overturned by the unexpected

action. More formally, if Mr. n chooses action am , then n + 1 should, before he observes

his own private signal, find it optimal to follow suit because he knows no more than n, and

since it is common knowledge that n rationally chose am : So after n's action, the public

12



belief is q G Im = (rm_i,rm ]. The next lemma codifies this logic (proof appendicized), for

it proves central to an understanding of the entire observational learning paradigm.

Lemma 7 (The Overturning Principle) For any history, if someone optimally takes

action am , the updated likelihood ratio £ G Im , and an uninformed successor follows suit.

This result precludes infinitely many contrary actions in a limit cascade, for that would

negate belief convergence — eg. for the running examples, the principle correctly predicts

<p(l,£) G [u, oo) and (f(2,£) G [0, it) (see figure 4). So belief convergence implies action

convergence, yielding the action counterparts to Theorems 1-2 (details in working paper).

Theorem 3 (Herds) A herd on some action will almost surely arise in finite time.

(a) With bounded private beliefs, absent a cascade on the most profitable action Om (in

state H) from the outset, a herd arises on an action other than om with positive probability.

(b) With unbounded private beliefs, individuals almost surely settle on the optimal action.

The bounded beliefs analysis proves in generality (and we think, simplicity) the major

pathological herding finding in Banerjee (1992) and BHW. 14
Strictly bounded beliefs so

happens to be the mainstay for their striking result, as the characterization makes clear.
15

The major reason to emphasize the above characterization is the continuous transition

from incomplete to complete learning as private beliefs tend from bounded to unbounded.

Theorem 4 (Continuity) Fix the payoffs and prior beliefs. 7/co(supp(F fc

)) converges

to [0, l],
16 then the chance of an incorrect limit cascade vanishes as k —¥ oo.

Proof: Only basins J* = [^*,oo] and J^ remain once co(supp(Ffc

)) is close enough to

[0, 1]. If 7r
fc

is the chance of a correct limit cascade, then EEqo > (1 — 7r
fc)P\ But £"£00 < £

by Fatou's Lemma, so that nk > 1 — Eo/fr. As k —> 00, I* —> 00, and so 7r
fc —> 1.

Remark: Fragility of Limit Cascades. BHW devote considerable attention to

the fragility of herds, pointing out that the release of a small amount of public information

can undo a herd. Our results on the nonexistence of cascades only serve to strengthen

this insight. Even in the limit, we have shown that generically (i.e. without atoms) the

likelihood ratio lies at the edge of the absorbing basin. Consequently, arbitrarily little

public information will break the limit cascade. By contrast, the limit belief in BHW is

bounded away from the edge of the absorbing basin, thus inoculating the model to the

release of sufficiently small packets of public information.

14And extended to M > 2 actions. BHW also handled several states (done in our working paper).
15While BHW didn't consider unbounded private signals, their working paper introduces perfectly

informative signals under the rubric of 'pseudo-cascades' (ruled out by our assumption of mutually a.c.

information). Complete learning in that context is clear. For once the public beliefs overwhelm all but the

perfectly revealing signals, the very next contrary action reveals the state of the world, and we're done!
16We mean the HausdorfF topology: If co(supp(F*)) = [ak ,bk ], then ak -> 0, and bk -» 1.
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3.3 Must Cascades Exist with Bounded Beliefs?

Or rather, we ask "Can cascades exist...?" As (mn ,£n ) is not^i finite state Markov

chain, Theorem 2 cannot assert finite time convergence (a cascade) — for we may have

£n -¥ £ £ J but always £n $. J. Unlike BHW, cascades need not obtain, though herds must.

In the running bounded beliefs example, a cascade on action ai obtains iff £ > 2u. In a

herd (and so limit cascade) on Oi, with £„—>£€ [2u, oo), figure 4 clearly shows that (£n )

never enters J\, but only approaches its edge. A cascade never starts.
17 So learning never

ceases: No matter how many individuals have followed suit, a contrarian might still appear.

A cascade on a* can only arise with a nonmonotonic likelihood transition function cp(i, •).

With a discrete signal distribution, BHW deduced that cascades must occur, and we

can easily see why this is true. For if a herd starts on action am ,
with int (Jm ) ^ 0, then

since £n < £ = inf(Jm ) implies FL
{pm-x{£n )) = FH (pm_i(4)) = 0, we have

/ ^(m £)-£ FL
(Pm(£n))-FHPm-dQ) ... FL

{Pm {£n))
()71+1 " ^ '

n) ~ n
F»(pm (£n )) - F"(pm- X {£n))

~ tn
F»{pm {£n ))

[b)

So £n+i/£n > inf{FL (p)/FH (p)\p G int (supp(F))} > 1 by Lemma A.l, and {£n ) must

'jump into' Jm in boundedly finite time. This needn't occur with general signal spaces.

One might prematurely conclude that cascades can only arise with discrete signal dis-

tributions, and thus are nongeneric. A counterexample to this conjecture is in Appendix F.

3.4 Mean Time to Herd

We illustrate the power of our framework by answering an important question: How

long is it until a herd starts? To this end, let £ lie in the communicating basin C C [0, oo),

the smallest interval that (£n ) cannot exit if it starts at £$. Inside C is at least one action

absorbing basin. 18 Relabel WLOG the actions that can be taken in 6 as 1, 2, ... , M. Thus,

6 = I\ U- • -U 1m (in reverse order). Call a string of identical actions that eventually comes

to an end a temporary herd; therefore, a putative herd is either a herd or temporary herd.

It suffices that temporary herds are of uniformly bounded expected duration, and that the

entry rate into putative herds is boundedly positive after a fixed number of periods.

Lemma 8 (Putative Herds) There is e* > and n* < oo such that a putative herd

starts in at most n* steps with chance at least e*

.

The appendicized proof rules out (£n ) remaining long in Uj{Ij\Jj — 0}, delaying the start

of a putative herd. Intuitively, at least until it starts, at least two actions can occur, and

17This also follows analytically: If in < 2u, then £n+1 = <p(l,£n ) = u/2 + ZE/4 < u/2 + 3u/2 = 2u too.
18

It is possible for (£n ) to jump over action absorbing basin J{ if tp(i, ) is locally decreasing nearby.
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with boundedly positive chance, (£n ) marches monotonically toward some Im with Jm ^ 0.

Let en be n's exit chance from a putative herd, and En = (1 — ei) • • • (1 — e„) the chance

Mr. 1, 2, . .
.

, n participate in it (since signals are conditionally i.i.d.). Then the chance of

a herd is E^ = F\ = (1 — ei)(l — e?) • • > exactly when YL en < °o.
19 Let bn be n's exit

chance from a herd conditional on its being temporary. The chance that a given herd at

stage n is permanent is Fn = (1 — en )(l - en+ i) • • •, and so by Bayes rule, bn = en/(l — Fn ).

EE — E_n —22.

Since the acid test ^2n (En — Eoc) < co can fail even when E^ > by Lemma E.l(b), a

good principle is: How quickly a herd starts depends not on how quickly individuals become

convinced of a state but on how slowly they can radically shift beliefs. This leads us to

Theorem 5 (The Speed of Action Convergence: How Long Until the Herd?)

(a) With atoms at the edge ofsupp(F), 20 herds begin infinite mean time.

LetFH (p) =c(p-by+0((p-b)i+1
) andFL

(p) =l-d(b-p)
5+0({b-pY+l

) near b andb.

(b) With bounded beliefs, herds begin infinite mean time iff 7, 5 < 2.

(c) With unbounded beliefs, herds begin in finite mean time in state H iff 7 < 2 and S > 2.

So for bounded beliefs, extreme signals in favor of the true state must have an unbounded

density, to ensure a correct herd in finite time. With unbounded beliefs, our proof explains

how if there are many extreme signals available in state H, and conversely few in L, or

7 < 2 and 5 > 2, then respectively, temporary herds on om and a t end quickly enough that

the eventual herd on om starts in finite time in state H — but then herds start in infinite

time in state L\ So, herds cannot start in finite mean time in both states. With unbounded

beliefs, complete learning eventually obtains, but is expected (ex ante) to take forever!

• Unbounded Beliefs Example Cont'd. With 7 = 6 = 2, the mean time to herd

is infinite, since a wrong temporary herd on ai in state H ends in infinite mean time.

Theorem 6 (Time Discounting) The expected 5-discounted fraction of time until a

herd starts vanishes as 5 —> 1, provided each F s has polynomial weight in the tails.

Proof: If a herd starts in period n, the discounted fraction of time until then is 1 —Sn
. The

expected discounted time to finishing any temporary herd is (1 — 5) ^J° En 6
n

. The proof

of Theorem 5 makes clear that En = 0(l/na
) for some a > if FL has polynomial weight

in its tail. The result follows from liminfI^ 1 _(l - x) J2T x"/na = for all < a < l.
21

19 For exp(-i) > 1 - x yields exp(- £ft
ek ) > (1 - ei)(l - e2 )

• , while an induction argument on the

number N of terms, followed by N -» 00, proves (1 - ei)(l - e2 )
• • > 1 - (£k ek ) if e { 6 [0, 1) for all i.

20
i.e., < FH (b) < FH (b~) < 1. With bounded beliefs, such extreme signals aren't perfectly revealing.

21 Michael Larsen (U. Pennsylvania) gave us a quick proof: Let 77 > 0. As the early terms of S(x) =
J2T z"/™" don 't affect our limit, assume l/n° < 77; then (1 - x)S(x) < (1 - 1)77(1 + x + x2

H ) = 77.
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4. NOISE

The pivotal role played by the overturning principle is somewhat unsettling. The

large weight accorded isolated actions is both economically implausible and theoretically

unappealing; 22 therefore, we now add 'noise' to the system: Some percentage of individuals

either by design ('craziness') or mistake ('trembling') do not choose wisely. We assume

that being noisy is not public information, and that this trait is distributed independently

across individuals. Since all actions are expected to occur, none can have drastic effects.
23

Below, we address the simplest case of craziness noise, and appendicize the discussion

of trembling noise. So with chance Km , Mr. n chooses action am , irrespective of history.
24

We assume a positive fraction k = 1 — $3m=i Km > of rational individuals, each of whom

take action am with chance p(m\s,£) = Fs
(pm (£)) — F s

(pm-i(£)). So action am is now

taken with chance ip(m\s,£) yielding likelihood continuation (p(m,£), where

ip(m\s,£) = Km + Kp(m\s,£) (6)

<p{m, £) = £i>{m\L, e)/if>(m\H, £) (7)

4.1 Convergence of Beliefs

Since £ — Ylm=\ xl; {
rn \H,£)if(m,£), (£n ) is still a martingale in state H, with almost

sure finite limit 4c- The interval structure of «7i, . .
.

, Jm (Lemma 6) is also still valid. So

p(m\H, £) = p(m\L, £) = 1 for some m implies p(m'\H, £) = p(m'\L, £) = for all m' ^ m,

and thus rational individuals take action am almost surely. Contrary actions will perforce

be adjudged ex post as noisy, and will simply be ignored. The next result asserts that

Theorems 1 and 2 are robust to noise. Statistically constant behavior of noisy individuals

doesn't affect long run learning by rational individuals, as it can be filtered out.

Theorem 7 (Long Run Learning with Noise) In the noisy model, £n —> ^ in state

H, where supp^oo) C [0,oo). With bounded beliefs, 1^ 6 J almost surely, and 4*, G Jm

with chance less than 1 if £ £ Jm- With unbounded beliefs, £00 = almost surely.

Proof: As all ip are boundedly positive, we need only check stationarity of £ G supp(£00 ),

or (p(m\H, £) = I

V>(m\H,t) = £
Km + Kp{mlLj

} =£
Km + Kp(m\H, £)

22 Note that the herd fragility discussed in BHW refers instead to the release of public information.
230ne might think that informational free-riders constitute a different form of noise — i.e. where some

individuals receive no private signal, and simply free-ride off the public information. But they do not

require special treatment: Simply let FH and FL each have an atom at 1/2.
24 Equivalently, every action is commonly misperceived by all successors.
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Figure 5: Continuations. Here, we juxtapose the two continuation likelihood functions for the

Bounded Beliefs Example — first for only rational individuals, then with some crazy types. We see in

the right graph that the discontinuity vanishes, corresponding to the failure of the overturning principle.

and so p(m\H,£) = p(m\L,£). That £ 6 J now ensues from the proof of Theorem 1, but is

conceptually easier here (one case and not two). Finally, mimic the proof of Theorem 2.

4.2 Convergence of Actions: The Failure of the Overturning Principle

While long-run learning is unaffected by constant background noise, herding is not so

resilient: Noisy individuals — like cats — simply do not herd. It is natural to ask about

rational herds: Do the rational agents herd? The failure of the overturning principle offers

a special challenge, as herd violations only minimally impact public beliefs, being deemed

irrational acts. This severs our clean implication: belief convergence => action conformity.

Let us illustrate how Lemma 7 fails with noise. The left panel in figure 5 depicts our

running Bounded Beliefs Example, where one can see that for £ near Jm ,
\(p(m, £) —£\

is small and \ip(m',£) — £\ is bounded away from for all m' ^ m. Observe how each

stationary point £* is only fixed under one continuation, since contrary actions can't occur

there: By the overturning principle, (p(m',£) — £ w only for m! = m when £ near Jm .

Introduction of a small amount of noise effects a remarkable sea change in figure 5, as seen

in the right panel of figure 5. For if all actions occur with boundedly positive chance, and

p and ip are continuous, ip(m',£) — £ = for all m' at the fixed point, by Theorem B.l.

For instance,

<p(m', £)-£ = £
*[PKIM)-P(m'|ff,l)] = p(m',

Kp(m'\H,£)+Km ,
~1 + Km>/(K

p(m',£)-£

p(m'\H,£))
(8)

where P(m',£) = £p(m'\L, £) /p(m'\H, £) is the old noiseless continuation. So, with noise,

\<p(m', £) — £\ vanishes for all m', and any £ G Jm : Indeed, (p(m, £) = £ since the numerator

is 0, and for m' ^ m, (p(m', £) = £ because the denominator is infinite (as p(m'\H, £) =0).
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That <p(m, £) — £ = at a fixed point £ allows us to make simple deductions about

the rate of convergence for this system. Appendix C develops a theory of stability for

stochastic dynamical systems like this one. Given functions tp and ip that are, respectively,

C l and continuous at the extremes, Corollary C.l asserts that

M
6 =

]"J
\<Pi(m, l)^™ 1

*1^ = rate that (£n ) converges to fixed point I

m=\

i.e., the frequency-weighted geometric mean of the continuation derivatives. The proof of

the next result contains the core essence of our most broadly applicable theoretical finding.

Lemma 10 (Rate of Belief Convergence) Assume that FH , FL have C l
tails,

25 with

derivatives f
H and f

L
. If private beliefs are bounded and f

H
(b),f

L
(b) > 0, then 9 < 1.

Proof: Clearly, ^2 =̂itp{Tn\H,£) = 1, while the martingale property yields the identity

£ = Y2m=i VHm l-^> £) (P(m y
£)'• If aU functions are differentiable, we then have

M M
1 - Yl ^H#' £)<Pt{™> t) + Yl Mm\£Mm, £) (9)

m=l m=l

At a fixed point £ G Jm , the second sum in (9) vanishes, since ip(m',£) = £ for all m\ and

Y^m'=\ ^i{m'\Hi £) = 0- So the arithmetic mean of the derivatives (ipi(m', £)) is 1. If any are

negative, then (£n ) eventually jumps into Jm (convergence rate 0). If all are non-negative,

the arithmetic mean-geometric mean inequality neatly proves that convergence occurs at a

rate 8 < 1, with equality iff all derivatives are 1. Let (3(m',£) = £p(m'\L, £) /p(m'\H, £) be

the noiseless continuation. Then (pe (m,£) = («;m + Kf3i(m,£))/(Km + re), which is strictly

less than 1: Pe(m,£) — 1 + £[f
H

(b) - f
L
(b)] < 1, given Lemma 1(a), bounded beliefs

(b > 0), and informative beliefs (b < 1/2). So 9 < 1.

Whether a rational herd eventually starts turns on the speed of convergence of the

public likelihood ratios (£n ). Suppose we have a limit cascade £n —> £ € Jm . When can we

rule out an infinite subsequence of rational 'herd violators', whose private beliefs counteract

the public belief? In light of the (first) Borel-Cantelli Lemma, 26
this occurs with zero

chance provided ]T^Li I
1 ~ P(m \H,£n )) < °° for almost surely all (£n )-

27 With bounded

beliefs, this inequality holds if FH and FL have C l
tails, with f

H
(b) # and f

L
(b) ^ 0.

For then the convergence of £n —> 0, and thus 1 - p(m\H, £n )
-> is exponentially fast,

given the positive tail density. So, Lemma 10 implies that

25Namely, each is C 1
in some open neighborhood of b and b.

26We mean the non-standard conditional version of the Lemma, e.g. Corollary 5.29 of Breiman (1968).
27Since not everyone is rational, this inequality in fact assumes a worst case.
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Theorem 8 (Rational Herds) Assume that private beliefs are bounded, and that FH

and FL have C 1
tails. Then rational herds must arise.

Lemma 10 doesn't apply to unbounded beliefs, and the slow rate of convergence may not

suffice for the Borel-Cantelli Lemma above. This must remain a (hard) open question.

5. MULTIPLE INDIVIDUAL TYPES

We now venture into new territory and investigate a richer and often more realistic

model with heterogeneous preferences, or types. A model with multiple but observable

types is informationally equivalent to the single preference world. So just as with the noise

formulation, we assume that types are private information. Still one can learn from history

by comparing the proportions choosing each action with the known type frequencies. This

inference intuitively ought to be fruitful, barring nongenericities, like equal frequencies and

exactly opposed vNM preferences. A curious new twist is then introduced — confounded

learning: Dynamics may well converge upon an outcome in which each action is taken

with the same probability in all states. This twin pathological learning outcome is by

one measure more robust than wrong herds, as it may arise even with unbounded private

beliefs. It also turns out to be an all-round fundamentally different economic beast.

5.1 The Model and an Overview

Given are finitely many types t — 1, . . . , T, where t determines both vNM preferences

over the given action set a\,...,a,M, as well as one's private signal distribution. Let A*

denote the known proportion of type t, and assume the types are i.i.d. across individuals.

Since an one's type is private information, this formulation is identical to noise if all but

one type has state-independent preferences. In contrast to noise, all decisions may depend

on (and thus be informative of) private signals. This radically changes the analysis.

As before, {£n ) is a convergent martingale in state H. Each type still employs a posterior

belief threshold rule when choosing an action; however, they will generally disagree on

the desirability of the actions. Let p'(m|s,£) be the chance that someone of type t will

choose action am ,
given state s e {H,L} and public likelihood £. Next, call the set

of £ yielding p
t{m\H,£) - p

t (m\L,£) = 1 the action absorbing basin Jl

m . Similarly, let

J* = J{ U J\ U • • U JlM for each t, so that J = J 1 n J2 n • • • D J7 is the overall absorbed

set: all £ where each type finds himself in an absorbing basin. So if just one type has

unbounded private signals, then J = {0, oo}. If £n 6 J, every action is chosen irrespective

of private information, and thus provides no information. Conversely, if £n £ J, some
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type's action is not a foregone conclusion. But unlike before, we cannot conclude that

£oo E J almost surely, as there are potentially more limit points.

In a limit cascade, a type-specific herd may arise: Everyone of the same type will take

the same action. But if types differ in their vNM preferences, unless all should take one

and the same action, an overturning principle doesn't work. As with noise, we must apply

the speed of convergence reasoning from section 4.2 to conclude that herds must arise.

The dynamics of the likelihood ratio are described in the usual notation by (7) and

T

i>{m\s, £) = ^2 AV (mis, £) (10)

t=i

If -0 is continuous in £, then any fixed points must satisfy (A-4): 4>(m\H, £) = or <p(m, £) =

£. By Theorems 2 and 7, all solutions to this criterion lie in the absorbed set, but with

multiple types, this is no longer true. We call its solutions £* outside J confounding

outcomes. Such may exist since (p(m, £*) — £* when actions are taken with equal chance

in the two states:

ip(m\LJ*) = ij;(m\H,e*) Vm (11)

Crucially, history is most certainly not totally informative at £*. For if it were, agents

would ignore it and their decisions then would generally be informative. Rather history has

become precisely so informative as to choke off any additional inferences. The distinction

with a cascade is both compelling and sweet. Both private signals and history affect

decisions in a confounding outcome, whereas in a limit cascade, history becomes totally

decisive, and private signals wholly inconsequential: Yet both are pathological outcomes.

To verify that confounded learning can occur, or £n —>£*, it suffices to check the generic

inequality (pt(l,£*) ^ tpg(2,£*), with both terms positive. For as in the proof of Lemma 10,

this will imply the local stability of the point £*. As defined in Appendix C, this means

that if (£n ) starts close enough to £*, then £n —> £* with positive probability: Since (£n )

cannot cycle, limit cascades and confounded learning are the only possible 'pathological'

(incomplete learning) outcomes in finite-action observational learning models.

5.2 Examples of Confounded Learning

We show that confounding outcomes may exist, and confounded learning can occur.

In the examples, we have M = 2 actions and T = 2 types. Types differ in their

preferences, but not their signal distributions. Type U is 'usual', preferring action a2 in

state H, ai in state L, and ai for private beliefs below p
u
(£) = £/{u + £). The preferences
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U U t2u

2u/3

f f t2u

Figure 6: Confounded Learning. Based on our Bounded Beliefs Example, with \u = 4/5,

u = v/2. In the left graph, the curves tp(l\H,£) and ip(l\L,£) cross at the confounding outcome £*, where

no additional decisions are informative. At £*, 7/8 choose action oi, and counterintuitively 7/8 lies outside

the convex hull of Av and Xu — eg. in the introductory driving example, more than 70% of cars may
merge right in a confounding outcome. The right graph depicts continuation likelihood dynamics.

of type V are opposite: action a\ always pays zero, while a2 yields payoff v in state H and

— 1 in state L. He thus chooses a\ for private beliefs above the threshold p
v

(£) = £/(v + £).

WLOG, v > u > 0, so vNM preferences are not exactly opposed if v > u.

• Bounded Beliefs Example Cont'd. The transition probabilities for type U are

nowpu (l\H,£) = (3£-2u)/2£andpu (l\LJ) = {3l-2u)(3£+2u)/8£2
, where £ 6 (2u/3,2u).

For type V, p
v
(l\H,£) = (2v - £)/2£ and p

v
(l\L,£) = (2v + £){2v - £)/8£

2
, where £ €

(2u/3,2v). With bounded beliefs, the absorbing basins complicate the dynamics. The

two types take action 2 with certainty in the intervals J^
7 = [0, 2u/3) and J% = [2u,oo),

respectively. If these overlap, then dynamics nonessentially differ from those in section 3

because only one of the types ever makes an informative choice for any £, thus precluding

confounded learning. The same remark holds if J^ = [2u, oo) and J^ = [0, 2w/3] overlap.

For u < v, no overlap arises if 2u/3 < u. So consider the dynamics for £ G (2u/3, 2u):

mHJ) = X»
3-^+X^ and mL ,l) = X»

{^m^+>? (2V -mV+e)
2£ 2£ U2 8£2

by (10). Figure 6 graphs these functions. We can rewrite (11) for a confounding outcome

as

{2v - £)(3£ - 2v)
=m

(2u - £){3£ - 2u)

If u > v then £ maps (2v/3, 2u) onto (0, oo), and so a confounding outcome exists for any

XU ,XV . Next, <pt(l,r) = (3A t/
/4 + \v /4)/ij;(l\H,£*) generically differs from <pt{2,t) =

(\
u
/4 + 3\v/4)/ip(2\H, £*) and both are positive. So confounded learning can occur.

Since the functions ip are increasing, the system either starts in a cascade in [0, 2u/3]
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or [2u, oo), or starts and thus is trapped in [2u/3,£*] or [£*,2u]. As all probability mass

is eventually concentrated at the endpoints, there can only arise only a wrong herd or

confounded learning if £ € [^*,2u], and a correct herd or confounded learning if £ e

[2u/3,£*]. Just as in the proof of Theorem 2, since (£n ) is a bounded martingale and

E [£oo] = £Q , both possible outcomes have positive probability in each case. More generally,

with only a single confounding outcome, limit cascades must occur with positive chance.

5.3 The Basic Theory

• Theoretical Robustness. We have shown by example that confounding out-

comes can exist, and confounded learning may arise. We now finish outlining the theory.

Theorem 9 (Confounded Learning) Assume there are T > 2 types.

(a) If the private signal distribution is atomless, then for nondegenerate specifications

of preference and type proportions, confounding outcomes exist, and confounded learning

obtains with positive chance. No one confounding outcome must occur with bounded beliefs.

(b) Generically, at any confounding outcome only two actions are taken.

(c) Confounded learning is generically robust to the~addition of craziness noise.

(d) When confounded learning does not occur, a limit cascade arises, i.e. £n —» £ G J, and

is almost surely correct with unbounded beliefs.

(e) IfM > 2 with unbounded beliefs, or if the private signal distributions are discrete, then

generically no confounding outcome exists.

Proof: The first point has been addressed by the example, which is not nongeneric.

(6) Let us consider the equations that a confounding outcome £* must solve. First, with

bounded beliefs some actions may not occur at all at £*. Assume that M < M actions

are taken with positive probability at £*. Equation (11) reduces in (a la Walras' Law)

to M - 1 independent equations, since 1 = Ylm=i i; (
rni\H^) — ^2i^ii>(mi\L,£) = 1-

Generically, M — 1 equation in one unknown £ can only be solved when M = 2.

(c) Equality (11) still obtains if state independent noise is added to both sides. The

sign of <fii(i, £), as it equals

d jj
L
{i\£)

= ^
H {i\£)^{i\£) - i)

L {i\£)^{i\£) _ ffi(j|l)
- g(t|g __ a^(i\£) - a^f{i\£)

d£^(i\£)~ ' ^{i\£f
~

j>
H {i\e)

~
aiPH {i\£) + {l-a)Ki

when (11) holds. Finally, only for nongeneric noise will <fe(l,£) = (pt{2,£).

(d) Any £ 6 4o must satisfy (A-4). This precludes all but limit cascades, where

ip(m\£) = 1 for some action am , and confounding outcomes, where ip(m\£) > for at least

two actions am . The unbounded beliefs argument is by now standard.
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Figure 7: Continuations and Absorbing Basins. This is based on the Bounded Beliefs

Example, but here with one insurance and two extreme actions. In the first graph, preferences are such

that there is no interior basin, but in the second graph there is an interior basin. Observe in the second

graph, that with the basin, for any value of I at most two actions are in play. This is the kind of example

which can be used to construct models with M > 2 and confounded learning.

(e) If one of M > 2 types has unbounded private beliefs, then for no £ G (0, oo) are

only two actions taken with positive chance. So confounding outcomes only appear in

degenerate models. Next,

A^ p
v(l\H,e)-pv (l\L,£)

\v p"(l\L,e)-pV(l\H,e)

is a reformulation of (11), and so ifFH and FL are discrete, then the RHS will only assume

a countable number of values, and confounding outcomes will generically not exist.

Remarks. 1. While only two actions will occur with positive chance at generic

confounding outcomes, generic models with M > 2 actions can still have confounding

outcomes. For with bounded beliefs, only two actions may well be taken over a range of t.

This will happen when there are absorbing basins for the insurance actions, as in figure 7.

2. Being a fixed point, we can say little about the uniqueness of confounding outcomes

I* — except that with discrete distributions, they are not unique when they exist (for an

interval around t will satisfy (11) because FH and FL
are locally constant).

3. Our example posited two types with different preference orderings over actions. If

only vNM preferences differ, then one can show that no confounding outcome can exist.

• Economic Importance. We now return to our introductory example, and shed

some light on exactly when one should expect to see our new confounding phenomenon.

• The Driving Example Revisited with Unbounded Beliefs. Posit that

Houston (type U) drivers should merge right (action a x ) in state H, left (action a2 ) in

state L, with the reverse true for Dallas (type V) drivers. Going to the wrong city yields
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zero always. Getting home by the right lane a\ is preferred, as it has fewer potholes. The

payoff vector of the Houston-bound is (u, 0) in state H and (0, 1) in state L; for Dallas

drivers, it is (0, 1) and (u,0).
28 The proportions are A^ = .7 and Xv = .3.

Claim With a differentiable signal distribution and unbounded beliefs, a confounding

point exists if preferences are more disparate than type frequencies: u/v < Xu/Xv < v/u.

Proof: We show that ip(l\H, £) lies below -0(1 JZ^, £) near £ = and above it near £ = oo,

and therefore by continuity the transition probability curves must at some £ coincide.

Differentiating

V>(l|s, £) = XuF s
(£/(u + £)) + X

v
[l - Fs

(£/{v + £))]

near £ = yields ^(l|s,0) = f
s (0)[Xu/u - Xv /v]. Since /

L
(0) > f

H
(0) by Lemma A.l,

ipe(l \H, 0) > ipe(l\L, 0) iff Xu/Xv > u/v. The reverse inequality near £ = oo is similar.

The intuition for the existence of confounding points is simple, and common to bounded

beliefs. Clearly, if nearly all drivers are Houston-bound, then it is uniformly true that more

will merge right in state H than in state L. But otherwise, if preference differences domi-

nate, then what matters near extreme beliefs is how many contrarians of either type exist.

By Lemma 1, there are many more (infinitely more with unbounded beliefs) doctrinaire

contrarians when they are right than when they are wrong. Thus, more will merge right

(resp. left) for public beliefs near p = b (resp. p = b) in state H than state L (conversely).

6. CONCLUSION

This paper has explored and expanded upon the so-called herding literature. We hope

our analysis underscores a rich theory that ensues from attention to likelihood ratios and

their conditional martingale property in theoretical learning models.

• Related Literature. We think it noteworthy that Milgrom's (1979) convergence

theorem for competitive bidding also turns on the bounded-unbounded signal knife-edge.

We must underscore that our complete learning results are in no way related to Lee

(1993), where a rich continuous action space effectively allows for a one-to-one map of

signals -H- actions. As roughly foreseen by Banerjee (1992), this precludes herding in much

the same way as statistical decision problems do. A key touchstone of herding is the coarse

inference of predecessors' signals as they pass through a lumpy filter (like action choices).

there is no loss of generality in our model with two signal values compared to a model

with many signal values.

28By a payoff renormalization, this is equivalent to our standard payoff structure.

To quote from Lee (on page 397): From the standpoint of information revelation, a sparse action
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• Lessons for the Experimentation Literature. Our companion paper Smith

and S0rensen (1996a), or SSI, presents a different slant on this field, drawing a formal par-

allel between bad herds and incomplete learning in optimal experimentation: observational

learning -f-> experimentation, as actions <-> signals, as belief thresholds «-» actions. SSI also

makes it clear that even if a patient social planner (unable to observe signals) could control

the action choices, he too would succumb to bad herds, given bounded private beliefs.

In light of SSI, that more than two actions generically cannot be taken at a confounding

outcome speaks to a general property of optimal experimentation models. For instance,

SSI cites published examples of incomplete learning, and all have binary signals.
30 And

in fact, given exogenous signal functions and just two states, only nongeneric models yield

beliefs for which more than two signals optimally arise with equal chance in either state.

Our stochastic stability condition also may be a useful tool for optimal experimentation

problems. Since informational herding is formally equivalent to single person learning, we

suspect that by focusing on the the stochastic dynamic process of likelihood ratios rather

than the intricacies of dynamic optimization, our stability program offers significant hope.

For example, in the popular two-state, continuous-action learning models, it suffices to

verify that near a fixed point, the continuation posterior does not always have the same

slope as a function of the prior belief after each observed signal. This condition clearly has

nothing to do with the particulars of the actual dynamic optimization. Indeed, this paper

has afforded this simple insight precisely because the optimization problem is so trivial.

• Where Do We Go Now? Smith and Sorensen (1996b) relaxes the key assump-

tion that one can perfectly observe the ordered action history. While this is yet another

(more plausible) reason for why isolated contrary actions might have little effect, we are

motivated by deeper concerns. For absent martingales, the resulting analysis is radically

different that standard rational learning theory, and forces one to think (a la Blackwell)

abstractly about information, and to delve deeply into the theory of urn processes.

A. ON BAYESIAN UPDATING OF DIVERSE SIGNALS

The set-up (measures fi
s and distribution functions Fs

, s = H,L) is taken from §2.1-2.2.

The characterization of the Radon-Nikodym derivative of FH , FL
in Lemma 1 implies

set provides little means to convey the private information. Consequently the infinite sequence of private

signals adds little to the updating of the posterior distribution and the whole sequence of individuals may
end up choosing the wrong action.

30An additional one that has come to our attention is Kihlstrom, Mirman, and Postlewaite (1984).
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Lemma A.l (Extreme Beliefs are Informative)

(a) FH (p) < pFL
(p)/(l - p) holds for all p <E (0, 1), and is strict when FL

(p) > 0.

(b) The ratio FH/FL
is weakly increasing, and strictly so on (b,b].

Proof: Since / = dFH/dFL is a strictly increasing function, we have

FH (p) = ( f(r) dFL (r) < f(p) f
dFL

(r) = pFL
(p)/(l - p) (A-2)

Jr<p J T<P

for any p with FL
(p) > 0. Thus, whenever FL

(p) > FL
(q) > 0, we have

FH (p) - FH (q) = f f(r) dFL {r) > [FL (p) - FL
(q)]f(q) > [FL (p) - FL

(q))F
H
(q)/FL (q)

Jq

where we have used (A-2). It immediately follows that FH(p)/FL {p) > FH (q)/FL (q).

B. FIXED POINTS OF MARKOV-MARTINGALE SYSTEMS

The general framework that we introduce here includes, but is not confined to, the

evolution of the likelihood ratio (£n ) over time viewed as a stochastic difference equation. 31

Given is a finite set Ai, and Borel measurable functions <p(- , •) : M. x K+ —¥ K+, and

ip{-
1
•) : M x M+ ->• [0, 1] satisfying:

• ip(-
1 £) is also a probability measure on M for all £ € R+, or J2meM ip{m\£) = 1.

• 4> and ijj jointly satisfy the following 'martingale property' for all £ G M+

:

J2i>(rn\£) (p(m,£)=£ (A-3)

For our application, ip(m\£) is the chance that the next agent takes action am when faced

with likelihood £, and <p(m, £) is the resulting continuation likelihood ratio.

Next, for any B in the Borel a-algebra B on R+ = [0, oc), define a transition probability

P:R+ xB->[0,l]:

P(£,B)= J2 ^H')
m\<p(m,e)eB

Let (£n)%Li be a Markov process32 with transition from £n i-> £n+ i governed by P, and

31 Arthur, Ermoliev, and Kaniovski (1986) consider a stochastic system with a seemingly similar structure

— namely, a 'generalized urn scheme'. But their approach, differs fundamentally from ours insofar as here

it is of importance not only how many times a given action has occurred, but exactly when it occurred.
32 Technically, £n : QH -> K+ is a measurable Markov process on (Q

H
,£
H ,vH ), where EH and £L

correspond to the restriction of sigma field S to QH and fi
L

, respectively. Despite a countable state space,

standard convergence results for discrete Markov chains have no bite, as states are in general transitory.
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El\ < oo. Then (£n ) is a martingale, true to the above casual label of (A-3):

E[en+1 \el ,...,£n ]
= E[£n+1 \£n]= f tp(£n ,dt)= ]^vH4Mm,4) = 4

By the Martingale Convergence Theorem, we have £n
—

> £<*> = lim^oo £n > a.s.

Theorem B.l (Stationarity) If £ >-> (p(m,£) and £ i-> ip(m\£) are continuous for all

m G M., and £n —» £00 almost surely, then for all £ G supp(£0O ), stationarity P(£, {£}) = 1

obtains, i.e.

ip{m\£) = or ip(m, £) = £ for all m G M (A-4)

Indeed, (£n ) must also converge weakly (in distribution) to £00. Since (£n,mn ) is also a

Markov chain, its limiting distribution is intuitively invariant for the transition P, as in

Futia (1982). The a.s. convergence then implies that the invariant limit must be pointwise

invariant. While Theorem B.l admits a proof along these lines, the continuity assumptions

are subtly hard-wired into the final stage of Futia's proof of this fact. As we wish to do

away with continuity, we establish an even stronger result. That (A-4) is violated for m
exactly when neither ip(m\£) nor p(m,£) — £ is zero suggests

Theorem B.2 (Generalized Stationarity) Assume that the open interval I C R+ has

the property

3e > W e I 3m G M : ip(m\£) > e, \<p(m, £) - £\ > e (*)

Then I cannot contain any point from the support of the limit, £00.

Proof: Let / be an open interval satisfying (*) for e > 0, and suppose for a contradiction

that there exists £ G /nsupp(4o). Let J = (£-e/2,£+e/2)nl. By (•), for all £e J, there

exists m G M with ip(m\£) > e and <p(m,£) <£ J. Since £ G supp(£oo), £n G J eventually

with positive probability. But whenever £n G J, £n+\ & J with chance at least e. That

is, the conditional chance that the process stays in J in the next period is at most 1 — e.

So the process (£n ) almost surely eventually exits J. This contradicts the claim that with

positive chance (£n ) is eventually in J. Hence, £ cannot exist.

Corollary Assume that £ G supp(^0O ). Then for each m G M, either £ h-> tp(m, £) or

£ !-> ip(m\ £) is discontinuous at £, or the stationarity condition (A-4) obtains.

Proof: If there is an m such that £ does not satisfy (A-4) and both £ i-> (f(m, £) and

£ 1-4 ip(m\£) are continuous, then there is an open interval / around £ in which ip(m\£)

and <p(m, £) — £ are both bounded away from 0. This implies that (•) obtains, and so

Theorem B.2 yields an immediate contradiction.

Finally, it is obvious that the corollary implies Theorem B.l.
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C. STABLE STOCHASTIC DIFFERENCE EQUATIONS

In this appendix, we first develop a global stability criterion for linear stochastic differ-

ence equations. We then use it to derive a result on local stability of a nonlinear systems. 33

There is a small extant literature that treats models like ours at an abstract level. Bellman

(1954) is cited as the first work in this area, Furstenberg (1963) is a classic article, and

Kifer (1986) is a modern textbook. Ellison and Fudenberg (1995) have independently ob-

tained related 'concrete' results, yet not as flexible — state-dependent transition chances

is critical for our needs, and extrapolation to many dimensions an added benefit of our

different approach.

Further, we add an analysis of rates of convergence. There is a small literature which

treats the problems we discuss here, but we have not been able to exactly recognize our

results. Overall, the literature is aimed at determining an exact rate 9 of convergence of

(£n ) to a fixed point, such that 9~n£n —> C f°r some £ ^ 0. We, on the other hand, are

happy to settle for an upper bound 9 such that 9~n£n —> for all 9 > 9. In the one-

dimensional linear case we treat in Lemma C.l, we do obtain the exact rate, but, as we

discuss later on, we do not determine the exact rate in higher dimensions.

• Linear Stochastic Difference Equations. Fix a, b G M, p G [0,1], and let

£ e R. Let

{a£n_i with probability p
(A-5)

6£n_i with probability 1 — p

define a Markov process (£n ). This can be recast as: £n = aVn b^~Vn £n-i, where (yn ) is a

sequence of stochastic indicator functions defined by yn = 1 when an < p, and yn =

otherwise, where (an ) is a sequence of i.i.d. uniform-[0, 1] random variables.

Lemma C.l (Stability of Linear Homogeneous Systems) Define 9 = |a|p |6|
1-p

.

(a) Almost surely, 9~n£n —> for all 9 > 9. In particular, £n
—

> almost surely if 9 < 1.

(b) If 9 < 1 and No is any open ball around 0, then there is a positive probability that

£n £ No for all n, provided £ € No-

Proof: (a) Let Yn = £Li2/*- Then \£n \

= (M^I&I
2^)" \£ \. Since Yn/n -> p a.s. by

the Strong Law of Large Numbers, the result follows from |a|"^|&|
s_^~a' —> 9 a.s.

(b) If ab£ — 0, then (^n ) with positive chance jumps to at once, and stays there. Let

ab£ ^ 0. Since £n —>• a.s., all but finitely many terms lie inside any open ball No around

33We are coining terms here. We call a fixed point £ of a stochastic difference equation locally stable if

Pr(lim„_+00 £n = £) > whenever £ € J\f(, a small enough neighborhood about I. If Pr(lim„_>0o t-n = ^) >
for all £ , then £ is globally stable.
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a.s., or Pr (\JkeN f]n>k{^ e fi
w
|4 G A/o}) = 1. So Pr ({w G Q"|Vn > fc, 4 G A/o}) >

for some k. So with positive chance, (4) stays inside A/o starting at that 4- WLOG k = 1

since dynamics are time invariant. With scale invariant dynamics, any £ G A/o will do. D

Remark 1. First, time invariance allows us to conclude that 4 G A/o for all n with

positive probability if 4 = £~m- Second, the equations are linear, so that if ||4|| < 114/11

then 4 ^ ||4||/IKm||A/o for all n. So, we have now a smaller ball around zero, such that if

the system started in the small ball, it would remain in the large ball. But finally notice

that from any point of the original large ball, one can reach the inner ball in only a finite

number of steps, which occurs with positive probability too.

Remark 2. Observe that it is not the arithmetic mean of the coefficients pa + (1
—

p)b, but their geometric mean that determines the behavior of the linear system. If we

reformulate the criterion by first taking logarithms, as inplog(|a|)+ (l—p)log(|6|) < 0, then

this is reminiscent of stability results from the theory of differential equations. It is common

for the logarithm to enter when translating from difference to differential equations.

Remark 3. It is straightforward to generalize Lemma C.l to the case of more than two

continuations, i.e. where yn has arbitrary finite support. The analysis for multidimensional

4 is also of importance, but unfortunately in that case only one half of the lemma goes

through. Indeed, let 4 G Mn and assume

f A4-i if Vn = 1

[£4-i ifyn =

where A and B are given real n x n matrices. Let \\A\\ and \\B\\ denote the operator

norms of the matrices. 34 Then the following half of Lemma C.l goes through, with nearly

unchanged proof (using \\AB
\

\ < \\A\\ \\B\\): If 9 > 9 = \\A\\p \\B\\
l -p

,
then 9~n£n *A 0, i.e.

4 converges a.s. to zero at rate 6. As this part of Lemma C.l is the only result applied in

the sequel, our local stability assertions will also go through in multidimensional models.

Call 6 a convergence rate of 4 -> £* if 0~n4 -> for all 9 > 9. This definition is

not very tight, for if (4) converges to t at the rate 9', then it also does so at any rate

9" G [9', 1]. Perhaps we ought to narrow down the convergence rate to the infimum rate;

however, that is impractical, for in multidimensional settings we do not have the converse

part of Lemma C.l. In general, it is possible to find convergence rates smaller than 9.

Consider for instance the case where A is the projection onto a linear subspace, and B is

the projection onto its orthogonal complement, then 9 = 1, but is a.s. reached in finite

time. We prefer to maintain the possibility of calling 9 a convergence rate, even if it is not

34That is, p|| = suP|l|=1 \Ax\.
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the tightest such. See Kifer (1986) for more precise results for linear systems.

• Nonlinear Stochastic Difference Equations. Consider the revised process

defined by:

{V?(l,4-i) with probability V(l|4-i)

</?(2,£n_i) with probability V(2|4_i)

where transitions are independent: £n = (p(l,£n-i) iff an < ip(l\£n-i). We care about the

fixed points £ of (A-6):

<p(l,i) = i and <p(2,i) = i (A-7)

Theorem C.l (Local Stability of Nonlinear Systems) Assume that at a fixed point

£ of (A-7), each ip(i\-) > is continuous and <p(i, ) is Lipschitz, 35 with Lipschitz constant

Li . If the stability criterion

6 = Li^Ll-mi) < 1 (A-8)

obtains, then for some open ball around £, if £ lies inside it, (£n ) will with positive chance

forever remain inside it, while £n —> £. Also, whenever £n —> £, it converges at the rate 9.

Proof: First, we majorize (A-6) locally around £ by a linear stochastic difference equation

of the form (A-5), and then argue that Lemma C.l applies to our original non-linear system.

WLOG L\ < L2 . As ip(l, •) > is continuous, (A-8) obtains — and thus L\ < 1 holds

— in a neighborhood N{£) of £. Choose M{£) small enough so that for some p € [0,1],
'

L\l}fp <\, xl)(l\£)>p, and \\<p(i,e)-<p(iJ)\\<Li\\e-i\l for i = 1,2

for all £ e M{£). Fix £ G M{£). Define a new stochastic process (£n ) with £ = £ e M{£)

given, and

I
_'t=

(^(In-i-i) ify„ = l

where (yn ) is our earlier i.i.d. indicator sequence. Lemma C.l then asserts £n —> £ a.s.,

and ln € M(£) for all n with positive chance given £ 6 N{£). In any realization of (an )

yielding £n e M{£) for all n and £n —> £, the linear process (£n ) majorizes the non-linear one

(£n): As ip(l\£) > p when £ e N{£), we have yn = 1 => £n = (p(l,£n_i), and the Lipschitz

property yields the majorization ||^n — £\\ > \\£n - l\\ for all n (in this realization). So

£n —> £ for any such (an ) realization. In summary, £n —> £ with positive probability.

Finally, the rate of convergence is 9, since for any 9 > 9, a small enough neighborhood

35The function / : Rm -> Rk
is Lipschitz at the point x with Lipschitz constant L > if there exists a

neighborhood M{x) such that Vx 6 Af(x) : \\f(x) - f(x)\\ < L\\x - x\\. If / is continuously differentiable

at x, then / is Lipschitz with any constant L > ||D/(x)||.
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Afp (i) exists for which L\h\ p < 9. Whenever £n -> £, (£n ) eventually stays in Np {£),

wherein it is dominated by (£n), which converges at rate Lp
1 Ll~

p by Lemma C.l.

Corollary C.l (C 1-Local Stability) If each ip(i, •) is also continuously differentiable,

then Theorem C.l is true with 6= |p/(l,£)|* {1| ' ) ^(2,*)|
(1_,, ' (1| ')) < 1-

Finally, let us briefly explain precisely how Corollary C.l carries through in several

dimensions, i.e. when £ is a vector (for several states). In that case <p(m,£) is a vector

function, and we care about its matrix derivative Di<p(m, £) at the stationary point. We

then must assume that the operator norm ||Z?/^(m,£)|| (which is the same as the largest

eigenvalue) mis less than 1. Then the proof goes through, largely as before. We must also

be more careful with the dominance argument. Rather than choosing a constant L\ larger

than \y>i(l, £)\, we have to choose a matrix A with the same eigenspaces as D£<p(m, £), and

with all numerically larger eigenvalues.

D. MORE STATES AND ACTIONS

We can handle any finite number S of states. Given pairwise mutually absolutely

continuous measures fi
s

for each state, we fix one reference state, and use it to define

5 — 1 likelihood ratios, each a convergent conditional martingale. But the optimal decision

rules would become notationally cumbersome to write down. Rather than the simple

partitioning of [0, 1] into closed subintervals, we would now have a unit simplex in Rs_1

sliced into closed convex polytopes. We leave it to the reader to ponder the optimal

notation. 36
In Theorem B.2 (and its proof) we need to refer to the open intervals / and J

as open balls.

If a single action a is optimal in two states of the world, which will arise if there are

fewer actions than states, it will be impossible to statistically distinguish between these

two states in the limit. So, even with unbounded beliefs, we cannot possibly get complete

learning. But while we do not get full learning, in the terminology of Aghion, Bolton,

Harris, and Jullien (1991), we get adequate learning: the limit beliefs are such that the

correct action is chosen optimally.

In the same vein, with more than two states, the long-run ties of BHW may occur,

whereby more than one action is optimal in a given state. In that case, when the true

state of the world has two or more optimal actions, and there are unbounded beliefs,

full learning will obtain, but we will not necessarily observe that all individuals take one

36The exact formulation of what constitutes full-support beliefs, which is outlined in Smith and S0rensen

(1996b), is also slightly non-trivial.
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particular action. In short, the overturning lemma will fail among the actions that are tied

in the long run. But again, since the individuals will eventually get the optimal payoff,

the learning is adequate.

The analysis also goes through virtually unchanged with a denumerable action space.

Rather than a finite partition of [0, 1] in Lemma 2, we get a countable partition, and

thus a countable set of posterior belief thresholds f .

37 In this way, Lemma 3 will yield the

threshold functions p just as before. The martingale properties of the model are preserved.

The convergence result Theorem 2 does not depend on the action space being denu-

merable. In the bounded beliefs proof, a technical complication arises, as our choice of

the least m such that pm(£) > b was well-defined because there were only finitely many

actions. Otherwise, we could instead just pick m so that pm is close enough to b such that

all the "bounded away" assertions hold. Similarly, in the proof of unbounded beliefs case,

we could substitute a minimum action threshold pi by one that is arbitrarily close to 0.

Complications are more insidious when it comes to Theorem 3. With M — oo, both

results still obtain without any qualifications provided a unique action is optimal for pos-

teriors sufficiently close to and 1, for then the overturning principle is still valid near the

extreme actions. But otherwise, we must change our tune. For instance, with unbounded

beliefs, there may exist an infinite sequence of distinct optimal 'insurance' action choices

made such that the likelihood ratio nonetheless converges. This obviously requires that the

optimality intervals [rm_i,fm ] shrink to a point, which robs the overturning argument of

its strength. Yet this is not a serious non-robustness critique, because the payoff functions

of the actions taken by individuals must then converge!

Under noise, the only subtlety that arises is with the trembling formulation, where we

shall insist upon a finite support of the tremble from any I.

E. SOME ASYMPTOTICS FOR DIFFERENCE EQUATIONS

Lemma E.l Let x, € (0, 1) for all i, and define Xn = (1 — x{) • • (1 - xn ).

(a) Let Xqq = and xn = a/n + bn , with (bn ) summable. Then Xn = 0(n~a
), and so

J2n xn = oo if a < 1, £nXn < oo if a > 1, with £n Xn < oo if J2 |6„| < oo.
38

(b) LetX^ > 0. Then^iXn-Xoo) < Y>xn , andJ2n nxn = oo = £»(*»-*«>) = oo.

(c) // Xoo > and x{ < x < 1 for all i, then ^n nxn <oo^> Xoo » 0.

37This may mean that we cannot necessarily well order the order the belief thresholds, nor as a result

the actions.
38Say x 3> c (eg. x » is x boundedly positive) of a function or random variable x if there exists some

Co > c with x(-) > Co always. Likewise x < oo (or x boundedly finite) if x(-) < Co for some Co < oo.
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Proof of (a):
39 The binomial theorem yields dn = log(l - a/n — bn )

— log(l — l/n) a =

log(l — a/n — bn )
— log(l — a/n + Cn), for c„ = 0(l/n2

). By the mean value theorem,

\dn \
< \bn + Cn|/min(l — a/n - bn , 1 — a/n + c„) < 2\bn + c„| for large enough n (since

then l-a/n-bn > 1/2 and (1 - l/n) a > 1/2). So £ |6n |
< oo iff £ |d„| < oo, and

An = n
-
° exp(dj + • • • + dn )

= D„n- a
, where < D < Dn < D < oo. So A'„ = 0(l/na

).

The boundedly finite parts follow with such an exact bound.

Proof of (b): We've shown before that (1 — £i)(l — x2 )
• • > 1 — (xi 4- x-i + • • •) if all x {

lie in (0, 1). This means that ^2k>n xk > 1 — X^/Xn. Summing both sides over n and

appealing to £n Efc>n x* = E na;„ yields £nxn > EU ~ ^oo/A^) > 52(Xn - *«>)

Conversely, the identity E n(^n-i — -^n) = J2(Xn — -^oo) follows by rearranging terms

of partial sums to n = N, and taking limits as N —> oo. Our sought for result follows from

J2 nxn = X>(A'"-1 - Xn)/Xn_i < X>(Xn_l - Xnj/Xoa = Y,(Xn ~ X^/X^

Proof of (c): Since x < 1, there exists a(x) > 1 with 1 — x > exp(—a(x)x) for all

x E [0,x].
40 So A'oo = (1 -xi)(l -x2

)---> exp(-a(x)^k xk ) > exp(-a(x) £ fc
fcx

fc ). D

Lemma E.2 (Vanishing Dynamic Systems) Let g be nondecreasing, with g(0) = 0.
41

(a) Ifx = -g{x) and yn+l - yn = -g{yn ) with x(0) >y >0, then x(n) > yn .

(b) If g' < 1 exists, then (l—g'(z))z = —g(z) andy > z(0)—g(z(0)) => yn > z(n)—g(z(n)).

Proof of (a): By induction, assume x(n) > yn . If x(n + 1) > yn > yn+\, we're done. So

assume x(n + l) < yn . With x decreasing, there exists t' € (n, n + 1) with x(t') = yn . Then

/•n+1

x(n+l) = x(t')- g(x(t))dt > x{t')-g(x(t')){n+l-t') > x(t')-g{x{t')) = yn -g(yn ) = yn+ i

Proof of (b): If not, there is a least n with z(n) — g(z(n)) < yn and z(n + l) — g(z(n + l)) >

yn+i- Since z < and z — g(z) is increasing in z, we have z(t) —g(z(t)) > yn+i = Vn — gdjn)

for all t 6 [n,n + 1], whereupon z(t) > yn — once again because z — g(z) is increasing in

z. As g is also monotone, (1 — g'(z(t))) z(t) = —g(z(t)) < —g(yn ) for t < n + 1. Then

f
n+l d

z(n + 1) - g(z(n + 1)) = z{n) - g(z(n)) + / — (z(t) - g{z(t))) dt < yn - g{yn ) = yn+1

39We are very grateful to Herman Rubin of Purdue University (Statistics) for the proofs of (a) and (b).
40

If £(x) = l-x- e~ax , then f(0) = and f (1) < 0, and on [0, oo), £(x) ^ for x ^ x(a) e (0, 1), as

£" < 0. Since £'(x(a)) < 0, it follows that x'(a) > 0. Finally, a(x) is the inverse function to x(a).
41We are very grateful to Anthony Quas of Cambridge University (Statistics) for result (b) and its proof.
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F. OMITTED PROOFS AND EXAMPLES

• Fact: Fair Priors is WLOG. As alluded in §2, unfair priors (i.e. states H and

L not 50/50) is equivalent to a simple payoff renormalization. For Lemma 2 is still valid,

as it refers only to the posterior beliefs, while the key defining indifference relation

fmu
H
(am ) + (1 - fm)u

L
(am ) = fmu

H
(am+l ) + (1 - fm)u

L
(am+l )

(A-9)

implies that

,, l-fm uH (am )
- uH (am+i)

posterior odds = —=
= ——

r

z-.
-

rm uL {am )
- uL (am+1 )

Since priors merely multiply the posterior odds by a common constant, the thresholds

f ,...,fM are all unchanged if we merely multiply all payoffs in state H by the same

constant. Likewise, constants added to payoffs in any state do not affect any f{.

* The Unconditional Martingale: Proof of Lemma 4. Given the action

history {mi, . . . ,mn_i}, the conditional expectation of the next public belief is (by the

Markovian assumption),

E[qn+ i
| qn ]

= QnYl P(m\H,qn )
-

p{m{Lqn)
+ (1 - qn ) ^ P(™\L,qn )

-
p(m|L^

meM i + £" p(m\H,qn )
m£M l + tn p(m\H,qn )

E qnp(m\H,qn ) + (l-qn)p(m\L,qn )p{m\H,qn )
—— r—

—

= qn

meM qnp{m\H, qn ) + (1 - qn)p(m\L, qn )

k Absorbing Basins: Proof of Lemma 6. Since pm (£) is increasing in m by

Lemma 3, \pm-i(£),pm (l)] is an interval for all £. Then Jm is the closed interval of all £

that fulfill

Pm-i(£)<b and pm{£)>b (A-10)

Then interior disjointness is obvious. Next, if int (Jm ) ^ then FH (pm-\(£)) = and

F (pm(£)) = 1 for all £ e int(Jm ). The individual will choose action am a.s., and so no

updating occurs; therefore, the continuation value is a.s. £, as required.

With bounded beliefs, one of the inequalities in (A-10) holds for some £, but no £ might

simultaneously satisfy both. As Lemma 3 yields p (£) = and Pm(£) = 1 for all £, we must

have JM = [0, £] and Jx = [£, oo], where pM-i{£) = b and pi(£) = b define < £ < £ < oo.

Finally, let m2 > mu with £ x G Jmi and £2 G Jm2 . Then

Pm2 -l(£l) > Pmi {£\) >b>b> pmA^) > Pm2 -l(£2)
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and so £2 < £\ because pm2 -\ IS strictly increasing in £.

With unbounded beliefs, 6 = and 6 = 1. Hence, pm_i = and pm = 1 for £ 6 Jm

by (A-10). By Lemma 3, this only happens for m = 1 and £ = oo, or m = M and £ = 0.

• Limit Cascades: Proof of Theorem 1. We first proceed here under the

simplifying assumption that p and ip are continuous in £. By Theorem B.l, stationarity

at the point £ yields p(m\£) — or (p(m,£) = £. Assume £ meets this criterion, and

consider the smallest m such that p(m\£) > 0, so FH (pm-i(£)) = FL
(pm-i(£)) = 0. Then

(p(m, £) = £ implies FH {pm (£)) = FL
(pm (£)) > 0. Since FH yFSD FL by Lemma 1(c), this

equality is only possible if FH (pm (£)) = FL
(pm (£)) = 1. Thus, £ G Jm , as required.

Next abandon continuity. Suppose by way of contradiction that there exist a point

£ G supp(£oo) with £ £ J. Assume WLOG the state is H. Then for some m we have

< FH (pm (£)-) < 1, so that individuals will strictly prefer to choose action am for some

private beliefs and am+ i for others. Consequently, pm (£) > k, and since po{£) = < 6, the

least such m satisfying pm (£) > 6 is well-defined. So we may assume FH (pm_i(£)-) = 0.

Next, FH (pm (£)) > in a neighborhood of £. There are two possibilities:

Case 1. FH (pm (£)) > FH (pm_ 1 (£)).

Here, there will be a neighborhood around £ where FH (pm (£)) - FH (pm-i(£)) > e for

some e > 0. From (3), ip(m\£) = p(m\H, £) is bounded away from in this neighborhood,

while (4) reduces to (p(m,£) = £FL (pm (£))/FH (pm (£)), which is also bounded away from

£ for £ near £. Indeed, pm (£) is in the interior of co(supp(F)), and so Lemma 1 guarantees

us that FL
(pm (£)) exceeds and is bounded away from FH (pm (£)) for £ near £ (recall that

pm is continuous). By Theorem B.2, £ € supp(£0O ) therefore cannot occur.

Case 2. FH (pm (£)) = FH {pm_ l {£))-

This can only occur if FH has an atom at pm_i(£) = 6, and places no weight on (b,pm (£)].

It follows from FH {pm_ l (£)-) = and pm_ 2 < pm-i, that FH {pm_2 {£)) = for all £ in a

neighborhood of £. Therefore, ip{m - l\£) and <p(m - 1,£) - £ are bounded away from

on an interval [£, £ + T]), for some rj > 0. On the other hand, the choice of m ensures that

ip(m\£) and ip(m, £)-£ are boundedly positive on an interval {£-rj\ £], for some 77' > 0. So,

once again Theorem B.2 (observe the order of the quantifiers!) proves that £ £ supp(4o).

• Overturning Principle: Proof of Lemma 7. If n optimally chooses am , his

signal on must satisfy

1 ~ Tm~ X

> 'l(h)g(an ) >
l-^ (A-ll)

I'm— 1 Tm

Let E(/i) denote the set of all signals an that satisfy (A-ll). Then individual n chooses

action am with probability JE( dp*1 (resp. J^,h)
gdp,H ) in state H (resp. state L). This
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yields the continuation

£(h, am ) = £{h) r
'

H

Now just cross-multiply, and use inequality (A-ll) to bound the right hand integral.

* Herds: Proof of Theorem 3. With bounded private beliefs, we need only

combine Theorem 2 and Lemma 7. We shall prove that when the limit value £ is in Jm ,

then a herd on am must arise in finite time. Notice that £ G Jm implies pm (£) > b.

Consequently, (2) yields

p > 1 ~ f

m

^ > * ~ _m
fm 1 - b rm

where the strict inequality follows from b > 1/2. Similarly, £ < (1 — fm-i)/fm_i for all

£ G Jm , and so the closed interval Jm lies in the interior of [(1 — fm)/fm , (1 — fm_i)/fm-i).

Therefore, whenever £n
—> £ G Jm , we have £n G [(1 — fm)/fm , (1 — fm-i)/fm_!) for n > N

and N big enough. By the overturning principle, only action am is taken after period N.

Now posit unbounded beliefs. Assume WLOG that the state is H, with a^ optimal.

Theorem 2 asserts that £n —> a.s., and so £n is eventually in [0, (1 — fM-i)/^M-i)- But

by Lemma 7, whenever any other action than clm is taken, we exit that neighborhood of 0.

• Calculating the Chance of a Correct Herd. In the bounded beliefs example,

given £Q = 1, let a correct herd happen with chance n in state H. Theorem 2 tells

us that a limit cascade arises a.s., and by the the reasoning in §3 about this example,

supp(£00 ) C {2u,2u/3}. (Such a tight prediction is clearly impossible with cascades.)

Lebesgue's Dominated Convergence assures us that .E^oo
I

H] = £\ = 1 because \£n \
< 2u.

The identity 1 = ir(2u/3) + (1 — 7r)(2u) then implicitly defines -k whenever 2u/3 < 1 < 2u.

* Cascades with Smooth Signals. For a discrete jump into an absorbing

basin, for instance [2u, oo) in figure 4, simple graphical reasoning tells us we need the

left derivative <^_(l,2u) < 0. Since ip{l,£) = £FL (p(£))/FH (p(£)), the private beliefs

odds FL (p(£))/FH (p(£)), which is decreasing by Lemma A.l, must be more than unit-

elastic in £. The trick is to choose smooth but 'nearly' discrete private signal distributions.

Assume that [i
H

is Lebesgue measure on [0, 1], and that [i
L

satisfies dfx
L
/d/j,

H = g, where

g' > 0, g(0) > 0, and #(1) < oo. The belief p(a) = 1/(1 + g(cr)) in state H is decreasing in

a, and has support [1/(1 + g(l)), 1/(1 + g{0))}. Given the inverse a(p) = ^
_1

((! -p)/p),

the belief distributions are FH (p) = f* .da and FL
(p) = j\

)

g{a)da. Now action a2

requires that £g(a) < u, and since g(a) < g(0), we have inf^) = u/g(0). We thus only

need tpe (l,u/g(0)) = 1 - #(0)(1 - #(0)W(0). It suffices to choose #'(0) small for fixed
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chance

1

O 1

J2 2u/3 2u Ji2/5 2/3

Figure 8: Nonmonotonicity. The left graph exhibits FH and FL that work in the Cascades

with Smooth Signals Example, 'nearly' having atoms at the edge of their supports, they mimic the

effect in BHW: With lumpy information, actions are boundedly informative, and so a single decision can

toss all successors into a cascade. The right graph shows how the corresponding continuation functions

for the likelihood ratio are no longer monotonic.

g(0) £ (0, 1). Figure 8 gives such an example. 42

• Putative Herds: Proof of Lemma 8. Let £n G Im C Q, with WLOG m > 1,

and assume we are not yet in a putative herd. Absent a cascade (£n 6 Jm C Im ), at least

two actions are possible. Then either

a) Jm y^0 and action am is taken with chance 3> 0; or

b) an action <Zj (j < m) occurs with chance 3> 0, whereupon in+ \ G Ij, by Lemma 7; or

c) actions dj (j > m) are sufficiently more likely than a, (j < m) that when am is taken

(chance ^> 0), £n+i/^n 3> 1; so in boundedly many steps, (£n ) enters Ij, some j < m.

For if not (a) or (b), then am , am+1 is taken with boundedly positive chance. So there

exists b* G (b, b) and e > 0, am occurs only for private beliefs p < b*, and am_i iffp < b+ e.

After am ,

FL
(b*)4+ i >

FL (b*)-FL
(b + e)

FH {b*)
> 1 as e I

in
'- FH{b*)-FH {b + e)

where the monotonicity and inequality follow from Lemma A. 1(a) and (b).

Now, a putative herd starts at once with chance » in case (a), while (b) and (c)

inductively help establish Lemma 8: There is e*m > and km > such that £ transits from

Im into Ij (some j < m) in km steps with chance e*m . Then set k* = k^ + + k*M , and

£* = e\ • • -e*M (by the conditional independence of the private signals).

• Temporary Herds: Proof ofLemma 9. By the alternate formula for the mean

of a positive r.v., the mean time to exiting from a temporary herd — that is, conditional

42Namely, g(a) = (2a + 5)/10 for a e [0,1/4], g(a) = (18a + 1)/10 for a e [1/4,3/4], and g(a) =
(2a + 13)/10 for a e [3/4, 1].
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on eventually exiting is, the sum of chances of exiting after every period n = 1, 2, . . ., or

cc oo n /- T7> \ °° n /i\z7>

n=l n=l fc=l
fc

71=1 Jfc=l
k

y*A (1 - e*)(l ~ fl+i) _ y> g*g ~ gHJ _ y* ^n - fi
2^11 i_f Z^ !__p 2^ !_^
71=1 fc=l

"
71=1

l
71=1 X

with the last equality is true because EnFn+ i
= F\.

• Mean Time To Herd: Proof of Theorem 5. Consider a temporary herd on

om in state H: As £n € Im and EyL^H,^ = £n , (£n ) converges Jm with positive chance,

and so E^ > 0. An upper bound to Yl nen implies a uniform upper bound to the length

of the temporary herds, and a uniform lower bound to E^, by Lemma E.l(b) and (c).

• Part (a): Extreme Signals are Atoms. We have bounded beliefs, and as above

we wish to check that ^2n nen < oo. As seen in subsection 3.3, a putative herd ends in

boundedly many, say at most N, steps. Then en = for n > N, and Yln nen < N2
.

• Nonatomic Tails: Preliminary. We study how fast (en ) vanishes in a putative

herd on (say) aM - When clm is taken repeatedly, (£n ) obeys the recurrence

£ +1
- I

- -£
FL^-M)-F"{pM^£n )) =

Let preferences result in the private belief threshold Pm-i{£) = £/(u + £) for some u >

(Lemma 3). If £ solves b = p(£), then Lemma 1(b) implies that t](£) = 0, and that tj

is increasing near £ (as each of its factors is). Hence, we may apply Lemma E.2 to the

differential equation z = —n(z).

• Fact 1. The proof will proceed with weaker assumptions than in the theorem, in all

but one case: unbounded beliefs and 6 = 2. So FH (p) = c(p— 6)
7 + o((p— ft)

7
) and FL

(p) =

1 - d(b - p)
5 + o((b - p)

s
). Now f

H
(p) = cy(p - 6)

7" 1 + o{(p - &)
7_1

). Then with bounded

beliefs (b > 0), Lemma 1(a) yields f
L
(p) = cj(l - b)/b(p - ft)

7" 1 + o((p - &)
7_1

), which

integrates to FL
(p) = c(l - b)/b(p - 6)

7 + o{{p - 6)
7
); similarly, f

L
(p) = c^p1

' 2 + o(p7
- 2

)

and FL
(p) = 07/(7 - l)p7_1 + o(p1

~ l
) with unbounded beliefs.

43

• Fact 2. Consider the differential equation x = -j(x - x) 1 . For 7 < 1, the solution

reaches x in finite time. For 7 = 1, we get x = x + exp(-jt + d), d arbitrary. For 7 > 1,

we get xt = x + [(7 - l)(jt + h)}
1^ 1-^, h>0 arbitrary.

• Part (b): Bounded Beliefs. One key approximation that we use here and below

43 Observe that both integrals are valid since necessarily only 7 > (resp. 7 > 1) renders f
L

integrable

near b with bounded (resp. unbounded) beliefs.

38



is pM-i(£) ~k = pM-i{£) - p(£)[u/(u + £)
2
}(£ -£) + 0({£ - £)

2
). Recalling our formula

in (A-12), Fact 1 and some tedious algebra produces tj(£) = a(£ - f)
7 + o((£ - t) 1 ), where

a = c[u — £][u/(u + 1)
2

}

1
. There exist constants k < 1 < K (with K — k arbitrarily small

when \£ - £\ is) with ka{£ - £^ < rj(£) < Ka{£ - £)
7 for £ near £.

Assume 7 < 2. Then (£n ) is bounded above by the solution to the above differential

equation of Fact 2, by Lemma E.2(a). Since en = FH (pM-i{£n)) — c[u/(u + £)
2
}(£n -

tp + o((£n — £)'1
), we have (i) for 7 < 1, e„ = after finitely many steps; (ii) for 7=1,

(e„) converging exponentially to 0; and (Hi) for 7 e (1,2), e„ = 0(n_7/(7_1)
), so (nen ) is

summable. In all cases, there is an open neighborhood N containing the basin JM , with

^nen «C 00 when (£n ) is in J\f. But outside of N, we see from (A-12) that (£n ) is falling

in our putative herd by boundedly positive decrements, or £n+ \ < £n — e for some e > 0,

for then rj(£) > e. It thus reaches M in at most (1 — fM )/(efM ) steps. Thus, ]T nen <C 00.

With 7 > 2, t] is differentiable at £ with 77'^) = 0. Applying Lemma E.2(b), we can

see that £n = 0{n-^^-^), and that en = 0{n-'y^- 1
'>). So J2n en = °°-

• Part (c): Unbounded Beliefs. Mimicking the fist part of the bounded beliefs

analysis yields r](£) = at1 + o(F), where a — cit
1-7

7/(7 — 1). Notice that ?7'(0) = 0.

We now have two separate cases in state H: We want J^ nen <C 00 for a putative herd

on clm , and ^^Coo for one on a\ (which can't be a herd, and so E^, = 0). In the first

case, en = 0(n_7^7~^), and thus Yl nen -C 00 iff 7 < 2, just as with bounded beliefs.

For the second case, Lemma E.l(a) provides a simple test for ^2En <C 00 using en =

1 — FH (pi(£n )) alone. A putative herd on a\ in state H is analytically equivalent to one on

<2m in state L (with the derived criterion on 7 then applied to 6). So, we let (£n ) evolve as

before, but consider en = FL
(pM-\(£n))- Now Lemma E.2(a) and (b) yield [(7 — l)(Kan+

/>)]-i/(7-i) < 4 <
[(7 _ l)(kan + /i)]-

1^7-1 ), with k < 1 < K, both arbitrarily close to

one as £n is close to 0. So, a/[(Kj - l)(an + h)] < en < a/[(y — l)(kan + h)]. For 7 < 2,

we can find a < 1 with en < a/n eventually. Then J^n En = 00. Likewise for 7 > 2, a > 1

exists with en > a/n eventually, and so ^n £n <oo.

The case 7 = 2 requires special attention — as already noted, we go back to the

assumptions of the theorem in this case.
44 Then it can be proved exactly as before that

FL
(p) = 2cp2 + 0{p

3
). We have r)(£) = a£2 + 0(£3

), and it can be directly verified that

T)(£)/(l-T)'(£)) = a£2 + 0(£3
). So, we consider dz/dt = -az2 + bz

3 with a > 0. Integration

yields z(t) = l/[at + c— (b/a) \og(-b + a/z(t))} for z(t) < a/b, i.e. z close enough to zero.

Using our prior knowledge that z(t) = 0(l/t) together with log(l + x) = x + 0(x2
), we

get z(t) = \/{at + c- (b/a)[\og(a/z(t)) - b/(at) + 0(\/t2
)]}
= l/(at + d) + 0(\og(t)/t2

).

44
If we had used the more general assumption we could not conclude below that e„ — 1/n is summable.

We think a slightly larger error term likely also suffices, but we shall refrain from pursuing this.
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Lemma E.2(6) then yields asymptotically £n = l/(an + h) + 0(log(n)/n2
), and then we

get en = a/(an + h) + 0(\og(n)/n2
). Then e„ — 1/n is summable, and we conclude from

Lemma E.l(a) that ^n En = oo. D

• On the Trembling Form of Noise. A qualitatively different form of noise

instead posits that one may 'tremble', a la Selten (1975): Individuals randomly take a

suboptimal action with some idiosyncratic chance. Someone planning to take action am

will instead opt for a,j with probability K3m (£) for j ^ m, possibly dependent on t. For

simplicity, we insist that all K3m (£) be bounded away from 0. So the chance of deviating

from an optimal action am is Km (£) = Y^j^m Km(fy- Even with constant values of K]m , this

form of noise is history-dependent, and must be bounded above: Km (£) < 1/2M for allm.

The dynamics in state H are now described by (7) and

iP(m\s,£) = [1 - Km (£)]p(m\s,£) + Zj#n-*?WPti\s,.Q (A-13)

Observe crucially that craziness is a special case of trembling, where k™(£) is invariant

across j and £: Regardless of plans, one accidentally takes action am with fixed chance Km .

Proof of Theorem 7 for Trembling Individuals: We now show that Theorem 7 is also

valid for trembling noise. Indeed, all actions must be taken with positive probability, and

so ip(m\£) is indeed bounded away from by (A-13). We wish to argue once more that

<p(m, £) — £ = is satisfied under exactly the same conditions as in the proofs of Theorems 2

and 2. Let £ ^ be a stationary point, and assume by way of contradiction that more

than one action is taken with positive probability. Then < FH (pm (£)) < 1 for some m.

For any such m, we can use (7) to rewrite (p(m, £) = £ as follows:

[1 - Km (£)} [p(m\L, £) - p(m\H, £)} = £ «?(*) [p(k\H, £) - p(k\L, £)} (A-14)

Here, the sum on the right hand side may have negative and positive terms, but notice

that

m

Y,[p(k\H,t)-p(k\L,£)]
fc=i

m

=E [

pH
^) - FH (P*-i) - FL

(Pk) + FL
(Pk-i)] = FH {pm )

- FL
(pm )

k=l

Recall that the function FL-FH is first increasing, then decreasing, and that the threshold

pm is increasing in m. Thus, the negative terms in the sum can at most sum to (minus)
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the number F(£) = maxm=lt ...M{FL ipm)-F
H
{pm )}. Since £fc#m [p{k\H,£) - p(k\L, £)] =

p(m\H, £) - p(m\L, £), and k%(£) < Kk (£) < 1/2M by assumption, the left hand side of (A-

14) obeys the inequality

[1 - Km {£)) [p(m\L, £) - p(m\H, £)} < JL [p(m\L, £) - p(m\H, £)} + ^F(£)

and so

1- M [p(m\L,£)-p(m\HJ)]<^F(£)

As this holds for all m, we may sum over m = 1, . .
.

, m, and discover that

[FL (pn) - FH {Prn)] < m
2M-2 F(£)<

M
2M-2 F(£)

which is impossible by definition of F(£) (and M > 2). Hence, the equations <p(m,£) = £

could only be solved by an £ for which only one action is optimal. The proof of Theo-

rem 2 obtains once again, while <p{l,£) — £ is bounded away from on the interval / of

Theorem B.2, and so Theorem 2 goes through just as before also.
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