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Uncertainty is Key in Guilty & Innocent Verdicts

▶ The actual ratio of Type I to Type II errors is much
smaller than one, in Western legal tradition!



Can We Understand Blackstone’s Ratio?

▶ Blackstone: “Better that ten guilty persons escape, than
that one innocent suffer.”



Informative Signals

▶ Two states of the world {L,H}, and state H has chance q
▶ Informative signal: a family of probability distributions on

observables, one distribution for each state of the world
▶ Seeing σ probabilistically “signals” or indicates the state

▶ Here, the realized signal is σ ∈ {s, t}. Examples:



Martingale Property of Beliefs

▶ Bayesian updated beliefs are a martingale: After seeing
a signal, the expected posterior belief q1 is the prior q0.

E [q1|q0] = q0[P(s|H)q1(s)+P(t |H)q1(t)]
+(1 − q0)[P(s|L)q1(s)+P(t |L)q1(t)]

= q1(s)[q0P(s|H)+(1 − q0)P(s|L)]
+q1(t)[q0P(t |H)+(1 − q0)P(t |L)]

▶ Here, we have summed by parts
▶ By Bayes rule, posterior beliefs are:

q1(s or t)=
P(s or t |H)q0

q0P(s or t |H)+(1 − q0)P(s or t |L)

▶ So E [q1|q0] = q0P(s|H) + q0P(t |H) = q0

▶ This is the Law of Iterated Expectations
▶ Aside: This is a martingale→



Graphical Story of Two State Risky Choice

▶ Short an asset (S), buy it (long L), or stay in cash (C)
▶ State θ ∈ {B,G} fixes payoffs (θ = G with chance q)

π(C|G) = π(C|B), π(L|G) > π(L|B), π(S|G) < π(S|B)

▶ E(payoff of a|q) = qπ(a|G) + (1 − q)π(a|B) is linear in q

Optimal Action is a∗(q) =


Short if q ≤ q
Cash if q ≤ q ≤ q̄
Long if q ≥ q̄

expected payoffs▶ Fixing a∗(q), payoffs are linear in q
▶ Optimal payoffs are convex in q

if the optimal action changes



Risk Preference

▶ Risk preference: like/dislike wealth gambles X?
▶ risk loving if Eu(X ) ≥ u(E(X )), sometimes strict
▶ risk averse if Eu(X ) ≤ u(E(X )), sometimes strict

▶ Jensen’s Inequality (1906, Copenhagen Telephone Co!)

▶ u is convex on [a,b] iff u(E(X ))≥Eu(X ) ∀ r.v. X on [a,b]
▶ u is concave on [a,b] iff u(E(X ))≤Eu(X ) ∀ r.v. X on [a,b]
▶ u is linear on [a,b] iff u(E(X )) = Eu(X ) ∀ r,v. X on [a,b]



Risk Preference Review

▶ Concave utility functions: risk premium π measures how
much one is WTP to eliminate risk: u(EX − π) = Eu(X )

▶ Induced Convex Payoff Functions
▶ E.g. Call Options Induce Risk Loving Behavior by CEOs



(Optionality) Value of Information

▶ The value of information in a signal σ is the expected
optimal payoff given σ minus the prior expected payoff

▶ E.g.: a binary signal⇒ posterior is q′′H > q or q′′L < q

▶ Claim: The value of information is as depicted.
▶ Proof (omitted) uses martingale property of beliefs.
▶ So information has zero value if payoffs are locally linear
▶ Info has value only if it can change your optimal action
▶ It is the value of “optionality”



What is a garbled signal?

▶ To get σ′ from σ′′ by garbling:
▶ If signal σ′′ gives t , send it to s with chance 1/6
▶ If signal σ′′ gives s, send it to t with chance 1/6
▶ For instance, in state H, the garbling gives t with chance

(3/4)(5/6) + (1/4)(1/6) = 16/24 = 2/3

▶ The general definition of garbling says that there is a
Markov matrix that transforms σ′′ into σ′



Baby Blackwell’s Theorem (1951)

▶ Easy two state Bayesian version of Blackwell’s Theorem
▶ Blackwell (1951):

Garbling a signal reduces the value of information (VOI).
Conversely, if the VOI for signal σ′′ exceeds that of σ′ for
all state payoffs, then σ′ is a garbling of σ′′.

▶ Blackwell’s clever proof used the Minmax Theorem.
▶ Here’s a graphical intuition for easy (⇒) proof:



States and Losses (Payoffs)

▶ Actual multistate version statistical Blackwell’s Theorem
▶ Ω = {ω1, . . . , ωn}, states of the world
▶ experiment: n probability measures (µ1, . . . , µn) on X

▶ Finite outcomes X = {x1, . . . , xN }: an experiment is a
Markov matrix of probabilities Pn×N ≡ [pij ], where∑N

j=1 pij = 1 and 0 ≤ pij = chance of xj ∈ X in state ωi

▶ A ⊂ Rn, action space (i.e., vectors of payoffs/losses)
▶ a ∈ A is the n-vector of losses/payoffs in each state, i.e.

ai = loss in state ωi

▶ f : X → A, the decision function
▶ f (xj) ∈ A is the action taken after outcome xj

▶ expected loss/payoff from f in state ωi is vi(f )
▶ vi(f ) ≡

∫
X fi(x)dµi(x) ≡

∑N
j=1 pij fi(xj)

▶ Not Bayesian: We have no prior on Ω

▶ B(P,A) ⊂ Rn, loss vector v(f ) = (v1(f ), . . . , vn(f )) range



Blackwell’s Theorem
⋆ Pn×N1 is more informative than Qn×N2 [P ⊃ Q], if

▶ any payoff vector attainable with Q is attainable with P
▶ B(P,A) ⊇ B(Q,A) for all compact convex A ⊂ Rn.
⇒ P has a higher expected value than Q (Baby Blackwell)

⋆ Experiment P is sufficient for Q [written P ≻ Q], if
▶ i.e. qij =

∑N1
k=1 pik mkj for all j = 1, . . . ,N2 and i = 1, . . . , n

▶ So PM = Q for some Markov matrix M ← “garbling”

Proposition (Blackwell’s Theorem)
P ≻ Q iff P ⊃ Q.
▶ (⇒) is easy: Assume P ≻ Q.
▶ P ⊃ Q if any point in B(Q,A) attainable with a decision

function g is attainable under P.
▶ The decision function f (xk ) = (

∑N2
j=1 mkjg(yj)) suffices:

▶ Why? The payoff under P in state ωi is

vi(f ) =
N1∑

k=1

pik fi(xk ) =

N1∑
k=1

pik

N2∑
j=1

mkjgi(yj) =

N2∑
j=1

qijgi(yj) = vi(g)



Proof of Hard (⇐) Blackwell’s Theorem

▶ Assume P ⊃ Q.
▶ B(P,A) ⊇ B(Q,A) ∀A ⊂ Rn compact and convex
▶ Let A be the convex hull of rows of N2 × n matrix D

▶ i.e. the payoffs in each state after each outcome
▶ Pick decision function f of (Q,A) picking j th D row for xj

▶ Its expected payoff is vi(f ) =
∑N2

j=1 qijdji = (QD)ii .
▶ Since P ⊃ Q, some decision function g for (P,A)

selects aj ∈ A given xj , with vi(g) =
∑N1

j=1 pija
j
i = vi(f )∀i

▶ If aj
i =
∑N2

k=1 mjkdki for a Markov matrix M ≡ [mjk ], then
PMD and QD have the same diagonal entries:

vi(g) =
N1∑
j=1

pija
j
i =

N1∑
j=1

N2∑
k=1

pijmjkdki = (PMD)ii



Proof of Hard (⇐) Blackwell’s Theorem

▶ Constant-sum game of decision-maker vs nature.
▶ Nature chooses the payoff matrix D and the

decision-maker chooses the Markov matrix M.
▶ Nature’s payoff: Π(D,M) = tr [(PM −Q)D]
▶ Minimax Theorem yields a saddle point (D0,M0) for the

game for all feasible M and D:

Π(D,M0) ≤ Π(D0,M0) ≤ Π(D0,M)

▶ He then shows that PM0 = Q, and so P ≻ Q.



David Blackwell (1919–2010)

▶ Bottom line: informative signals are rarely ranked —
one must be a garbling of the other

▶ Some pair of decision makers will disagree on a ranking
of informative signals

▶ We next suggest that this conclusion is perhaps too dire


