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Uncertainty is Key in Guilty & Innocent Verdicts

Not Guilty Verdict

Guilty Verdict

Standard of judgement
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» The actual ratio of Type | to Type Il errors is much
smaller than one, in Western legal tradition!




Can We Understand Blackstone’s Ratio?

> Blackstone: “Better that ten guilty persons escape, than
that one innocent suffer.”

That it is better 100 gquilty Persons should escape
than that one innocent Person should suffer,

is a Maxim that has been

long and generally approved

— Benjamin Franklin (1785)




Informative Signals

> Two states of the world {L, H}, and state H has chance q
» Informative signal: a family of probability distributions on
observables, one distribution for each state of the world

> Seeing o probabilistically “signals” or indicates the state
L H

s| P(s|L)| P(s|H)

—=

P(IL) | P(tIH)

» Here, the realized signal is ¢ € {s, t}. Examples:
L H L H L H

s| 2/3 2/3 |s| 2/3 314 [s| 213 1/3

t 13 | 13 [t 13 | 14 [t 13 | 273

uninformative binary signal  symmetric binary
binary signal signal




Martingale Property of Beliefs

» Bayesian updated beliefs are a martingale: After seeing
a signal, the expected posterior belief gy is the prior qp.

Elgilgo] = qolP(sIH)g1(s)+P(tiH)a:(1)]
+(1 - qo)[P(sIL)q1(s)+P(tiL)gi1(1)]
= q1(8)[qoP(sIH)+(1 — qo) P(sIL)]
+a1(1)[qoP(t1H)+(1 — qo) P(tIL)]

Here, we have summed by parts
By Bayes rule, posterior beliefs are:

P(sor t|H)qo
qoP(sor t{H)+(1 — qo)P(s or t|L)

So E[ailqo] = qP(sIH) + qoP(tiH) = o e
This is the Law of Iterated Expectations S
Aside: This is a martingale —
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Graphical Story of Two State Risky Choice

» Short an asset (S), buy it (long L), or stay in cash (C)
> State 6 € {B, G} fixes payoffs (6 = G with chance q)

n(C|G) = n(C|B), n(LIG) > n(LIB), m(S|G) < n(S|B)
> E(payoff of algq) = qnr(alG) + (1 — g)n(alB) is linear in g

Short if g <
Optimal Action is a'(q) =4 Cash ifg<
Long ifg=>q

> Fixing a*(q), payoffs are linear in q expected payoffs

» Optimal payoffs are convexing  “® "
if the optimal action changes \ /

=(C|B) (Cle)

1

(LIB) ~(S|G)



Risk Preference

> Risk preference: like/dislike wealth gambles X?
> risk loving if Eu(X) > u(EE(X)), sometimes strict
> risk averse if Eu(X) < u(E(X)), sometimes strict
> Jensen’s Inequality (1906, Copenhagen Telephone Co!)

> uis convex on [g, b] iff u(E(X))>Eu(X) V¥ r.v. X on [a, b]
> uis concave on [a,b] iff u(E(X))<Eu(X) VY r.v. X on [a,b]
> uis linear on [g, b] iff u(IE(X)) = Eu(X) Y r,v. X on [a, b]
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Risk Preference Review
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» Concave utility functions: risk premium = measures how
much one is WTP to eliminate risk: u(EX — 1) = Eu(X)

> Induced Convex Payoff Functions
> E.g. Call Options Induce Risk Loving Behavior by CEOs

option
sale price

WTP for on maturity

option
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(Optionality) Value of Information

» The value of information in a signal ¢ is the expected
optimal payoff given ¢ minus the prior expected payoff

» E.g.: a binary signal = posterior is _CI,'L', >qorqg’<q

VoI"

!

q \1kl
"&./qo\/
» Claim: The value of information is as depicted.
> Proof (omitted) uses martingale property of beliefs.
> So information has zero value if payoffs are locally linear
> Info has value only if it can change your optimal action
> It is the value of “optionality”




What is a garbled signal?

L o' H L o H
1/4 3/4 1/3 2/3

> To get ¢’ from ¢’ by garbling:
> |f signal ¢” gives t, send it to s with chance 1/6
> |f signal o” gives s, send it to t with chance 1/6
> For instance, in state H, the garbling gives t with chance

(3/4)(5/6) + (1/4)(1/6) = 16/24 = 2/3

» The general definition of garbling says that there is a
Markov matrix that transforms ¢’’ into ¢’




Baby Blackwell's Theorem (1951)

» Easy two state Bayesian version of Blackwell’'s Theorem

> Blackwell (1951):
Garbling a signal reduces the value of information (VOI).
Conversely, if the VOI for signal ¢”’ exceeds that of ¢’ for
all state payoffs, then ¢’ is a garbling of ¢”’.

» Blackwell’s clever proof used the Minmax Theorem.

> Here’s a graphical intuition for easy (=) proof:

VOl' VvOl"




States and Losses (Payoffs)

> Actual multistate version statistical Blackwell’'s Theorem
> Q= {w1,...,wn}, states of the world
| 2

experiment: n probability measures (u1,...,un) on X

> Finite outcomes X = {xy,..., Xn}: an experiment is a
Markov matrix of probabilities Py«n = [pj], where

YL, pj=1and 0 < p; = chance of x; € X in state w;
A c R", action space (i.e., vectors of payoffs/losses)

> ae Ais the n-vector of losses/payoffs in each state, i.e.
a; = loss in state w;

f: X — A, the decision function
> f(x;) € Ais the action taken after outcome Xx;
expected loss/payoff from fin state w;j is v;(f)

> vi(f fx x)dui(x Z/ 1 Pifi(Xj)
> Not BayeS|an We have no prior on Q

B(P,A) c R", loss vector v(f) = (v4(f),..., va(f)) range
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Blackwell’'s Theorem

* Ppxn, I8 more informative than Qpup, [P 2 QY if
> any payoff vector attainable with Q is attainable with P
> B(P,A) 2 B(Q, A) for all compact convex A c R".
= P has a higher expected value than Q (Baby Blackwell)
* Experiment P is sufficient for Q [written P > Q)], if
> ie.gj= ZQ’; pxmyiforallj=1,...,Noandi=1,...,n
> So PM = Q for some Markov matrix M « “garbling”

Proposition (Blackwell’s Theorem)
P> Qiff P> Q.
> (=) is easy: Assume P > Q.
> P> Qifany point in B(Q, A) attainable with a decision
function g is attainable under P.
> The decision function f(xx) = (Z/'.V:?1 my;g(y;)) suffices:
» Why? The payoff under P in state w; is
Nj

Ny No N>
vi(f) = Z Pikfi(Xk) = Z pikz mygi(y) = Z q;9i(y;) = vi(9)
= k= = =




Proof of Hard (<) Blackwell's Theorem

» Assume P D Q.

» B(P,A) 2 B(Q,A) YA c R" compact and convex

> Let A be the convex hull of rows of N> X n matrix D
> i.e. the payoffs in each state after each outcome

> Pick decision function f of (Q, A) picking jth D row for x;
> Its expected payoff is vi(f) = L2, g;di = (QD);.

> Since P > Q, some decision functlon g for (P A)

selects @ € A given x;, with vi(g) = Z/ 1p,/ = Vvi(f)Vi

> |f aﬁ = ZQ’; mixdy; for a Markov matrix M = [my], then
PMD and QD have the same diagonal entries:

Zp’/ 2 Zz“p//m/kdk/ = PMD)ii

J=1 k=




Proof of Hard (<) Blackwell's Theorem

» Constant-sum game of decision-maker vs nature.

> Nature chooses the payoff matrix D and the
decision-maker chooses the Markov matrix M.

> Nature’s payoff: (D, M) = tr[(PM — Q)D]

> Minimax Theorem yields a saddle point (Do, Mp) for the
game for all feasible M and D:

MN(D, My) < N(Dy, Mo) < NM(Dy, M)

> He then shows that PMy = Q, and so P > Q.




David Blackwell (1919-2010)

» Bottom line: informative signals are rarely ranked —
one must be a garbling of the other

» Some pair of decision makers will disagree on a ranking
of informative signals

» We next suggest that this conclusion is perhaps too dire




