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Outline

e Theory of value and pricing of “information”, defined as

non-sequential sample size of i.i.d. signals.

e Motivation: the emergence of markets for large numbers of

cheap units of information (Internet databases).

e Question: If two experiments are not Blackwell-comparable,
is it still true that all bayesian Decision Makers rank unan-
imously the values of their n-replicas? And the marginal

values of the n-th observation?

e Answer: Yes, and the ordering is complete, for n large
enough (n > N). The minimum N < oo depends on the
Decision Maker, but is always finite. Every experiment
has a unique efficiency index ruling asymptotic value and

marginal value.

e Implications: The Law of Demand holds for small prices,

demand elasticity can be computed.



The (Standard) Model
A) The Decision Problem

e [inite actions a;, j = 1,2.. K
Finite states of Nature 6;, 1 = 1,2..M.

e Decision Maker DM= (¢, u): Non-degenerate prior beliefs

7 =1{q1, @, ..qu} and Payoffs u (a;, 0;) .
Action a; is best in state 1.

B) The Experiment

e Family of M probability measures € ={Fy} on {Q,S}.

e Before choosing a; DM draws from £", i.e. observes non-
sequentially n i.i.d. realizations X" = { X3, Xs,..X,,} of a
random variable X on {Q, S, Py} with distribution F'(.|6)
and density f (.|0).

e De Finetti’s Theorem: exchangeability suffices to justify
the 1.1.d. hypothesis



The Value of n Observations

e Bayesian Updating:

gl f (X4]0:)
ZrQrﬂyzlf (Xt|(97")

qi (X") =
e Bayesian decision:
a(X") = argmax ¥;q; (X") u (ay, 0;)
a;
e Value of £": Vg (n) — Ve (0), where:
Veln) = [ Sigula(X7)16) [0, (X16,)] 4X"

e Full Information Value: V*—V (0), where V* = 3;qiu (af, 6;).

Independent of the experiment.

e Full Information Gap (FIG): V* — Ve (n) > 0.



Double Dichotomy
Two States, Two Actions
eac{A B}andfe {L H} AisbestinL.

o Take A iff f (X”]L) /f (X"|H) large enough, or:

J(XHL) o1
Zl TIX ) =St > ¢(u,q).

e Probabilities of error:

L H
a, = Pr (S” < §\L) and (3, = Pr (S” < —|H>
n

n

Clearly £/n — 0. But by SLLN for 6 # 6 :

iﬁ S E[Inf(X]0)—Inf(X]6) 0] > 0.

Each error is a Large Deviation in state 6 of mean log-LR
S /n from SLLN limit. «,, and 3, vanish.

e FIG is a linear combination of Large Deviation chances with

positive coeflicients:

Vi —Vin) = quu(A, L) —u(B,L)] o, +qu[u(B,H)—u(A, H)| B,
= yr (¢, u) oy +ym (7, u) B



Large Deviations in the SLLN

Cramér’s Theorem

e V;iid. andnon-lattice, E[Y] > 0,V[Y] =02 Pr(Y <0) >
0.
Let S, =>" Y, M(t) =Elexp {tY}].

e Cramér Condition: E [exp {¢|Y]|}] < oo, It # 0.
e Theorem (Cramér 1938). For every ¢ < E[Y] let:
Pe = irtlf exp{—tc} M (t) = il;le lexp{t (Y —¢)}]
Then:

1. pe =M (7.) for 7. < 0.

2. For a given sequence {b, }:



Application to the logLR

of the Experiment
o Let ViE=Inf(X/|L)—In f(X;|H).

L
Our error : Pr (S < g\L) =

n n

SL ) o
Cramér : Pr | -2 <0|L — 1+
(n | o+\/2 7m7-0 ( ZTLT)

e Apply Cramér to ¢ = 0 = lim&/n with 75 and pg = min
m.g.f., and then correct for £/n > 0.

e Lemma. Assume the logLR of the experiment is non-
lattice and satisfies Cramér’s condition. Then

Pr () < €0)

Pr (5% < 0|6)

— exp {—7p¢}.

e Corollary.

; — b
Oy = a\/%mg <1+Z;> (1+0(1))exp {—70¢}
X p—0(1+0(1))

NG



The Hellinger Transform

1. KULLBACK-LEIBLER RELATIVE ENTROPY, mean logLR
Y? and drift of S? in state 6: e.g. for = L

AL_ED&wyiLmiéaéy@mdeZQ

2. HELLINGER TRANSFORM: m.g.f. of Y7 in state 6:

e - oo )

:/fXWtﬂMMHMT
= = Hy (—t—1)="H(t)

Properties: H (—1) = H (0) =1, H' (—1) = =\ < 0 and
H (0) = A >0 H'()>0
€ sufficient for F = He () > Hr ()
Hexr(t) = He(t)Hr(t); Hen (1) = [He (1))
HGs) = [ FXIHY XD ax

3. MINIMUM HELLINGER TRANSFORM:
irtlfH(t) = H(r)=plor T € (—1,0)
iItlfHL (t) = lftlfHH (—t — 1) =p
nf Hen (1) = Hen (1) = [He (7)]" = p".



Value Ordering

e We have obtained, for p the index of the dichotomy:

vV (n) \p/—%(lJro(l))

e Theorem. For all DM (¢, u), d € (0, p)
V Vi) V-V

(p—0)" -~ (pto)"

e Corollary. Given two experiments &;,& with indices

— 0.

p1 < pa, for every DM (@, u) there exists N (¢, u) < oo
such that DM prefers n observations of & over n of &
for all n > N (¢, u). Extends Chernoff theorem to general

decision rules.

e Remark. If & is sufficient for & then N (-,-) = 0. Else,
N (¢, u) finite but NOT uniformly bounded. But for any
finite set of DMs a unique cutoff N suffices for unanimous

ordering.



Marginal Value Ordering

e Lemma. For all DM and n > N (¢, u) the marginal value

is strictly decreasing:
Vin+l)=V(n)>Vin+2)—V(n+1).

e Theorem. For all DM (¢, u), d € (0, p)

Vin+1)—V(n) e Vin+1)—=V(n)
(p—0)" | (p+6)"

e Corollary. Given two experiments &;,& with indices

p1 < pa, for every DM (@, u) there exists N (q,u) < oo
such that the marginal value of the n — th observation is

larger in experiment 2 for all n > N (¢, u).



Example: Bernoulli

e T'wo experiments, no garbling:

¢r 1_¢r_
1_¢r gbr

and

NIV )
> Wl
A~ oW
QU OO

e Hellinger transform for experiment r» = 1, 2:
H (t) - wyta (1 - ¢T)1_t + (1 — wr)t ¢710_t

e Hellinger indices: po = 0.912 > 0.908 = p;. Experiment 1
is superior, because the extra spread is larger:
2 3 1 1 1 1

55 1574 5 20
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Example: Gaussian

e Gaussian. X ~ N (,ug, 09) After rescaling observations,
X ~ N (0,0%) and X ~ N (1,0%).

) = [ U I [ (X

> 1t
{ —t(1—1) } o, ol
X exp
2(to + (1 —=t)o7) ) ok +(1—t)o

o If o7 = oy = o, for both experiments r = 1,2 and only
the means differ across states, p = exp {—1/80%} /v/2m
and Blackwell ordering applies.

o If & ={or1,0m} ={1,3} and & = {2, 1} then no gar-
bling. But p; = 0.73 < py = 0.84, so the first experiment

with larger variances eventually dominates.

e The distance between variances is larger, state detection is

easler.
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The Law of Large Demand

for Information

e I'ix a DM (u,q) and an experiment €. Let DM purchase

samples at unit price p. Obtain a demand curve n (p) from:

ni%ai}% V (n) — np.

e Proposition. There exists p > 0 such that:
1. the unique maximizer n (p) is weakly decreasing in p €
(0,p), and n (0) = co.
2. For any given p € (0, p) the demand curve rises in pg.

Worse information is demanded in larger amounts.

e Proposition. The limit semielasticity of demand.

There exists a smooth function z (p) such that sup,e 5 7 (p) — 2 (p)| <

1 and p .
lim [— Z(p)p] = — :
pl0 dp In pge

e Hence for small prices.
Inp
n(p) ~

In pe
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B) Monopolist, Nonlinear Pricing

e Entry Fee Resolves Both Inefficiencies.
e [irm solves:
max F' + x (p)(p — ¢
p,F
st. F+x(p)p <V (x(p)—V(0)
e Solution: p* = ¢ and

F=V(z()—=V(0)—x(c)c=r"~

e Envelope:

drVt 9V (z(¢))
dp Op
No incentive to reduce the quality of information. The firm

< 0.

prices and produces efficiently, maximizes consumer surplus

and extracts it with access fee F'.
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