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1 OVERVIEW

• Individuals sequentially choose an action based on private

information, and observation of all predecessors’ actions

=⇒ not simple statistical learning

• pure informational externality; no economic externalities

• Banerjee (1992); BHW (1992)

• Two spins on their pathological learning outcome:

1. Belief Convergence, or Cascades: Public history eventually

becomes so informative that individuals disregard their

private information ⇒ public beliefs enter an absorbing

state, possibly wrong one

2. Action Convergence, or Herds: Eventually, all individuals

will take the same action, possibly wrong one
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• Generalization of the herding model

1. General private signal space: With continuous signals, herds

generically may exist without cascades

2. Unbounded private signal strength: ∃ complete learning in

belief and action space ⇒ only a correct herd obtains, and

herding pathology disappears!

3. Addition of a little noise: This does away with the

‘overturning principle’ (that one single individual’s contrary

action has drastic effects)

4. Multiple preference types: New pathology confounded

learning arises, even if private signals have unbounded

strength

5. Link to experimentation literature: herding is an example of

optimal single agent learning model
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2 THE STANDARD MODEL

• Infinite sequence of individuals 1, 2, . . . who act sequentially, in

an exogenous order

• Two underlying states of the world, H and L (assume H)

• Private conditionally i.i.d. signals σn (with no perfectly

revealing signals) & g(σn) = private L/H odds

• Actions a1, . . . , aM with state dependent payoffs

• Individuals have identical preferences over outcomes

• They observe the full action history, and make an inference

about other individuals’ signals, updating their own posterior

• The observed history of the first n− 1 actions leads to a public

belief qn that state is H, and a likelihood ratio `n = (1− qn)/qn
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Figure 1: The Individual Decision Problem: Frontier of Ex-

pected Payoffs and Posterior Thresholds.
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Private Belief Distributions

• if H,L are WLOG ex ante equilikely, then individual n has the

interim private belief p ≡ p(σn)=1/(g(σn)+1) that the state is H

• dist’n of private beliefs p = p(σ) is FH or FL

Q: What is the likelihood of L/H given my private beliefs?

? No Introspection Condition:

Any two c.d.f.’s can be rationalized iff dFL/dFH = (1 − p)/p

eg. FH(p) = p2 and FL(p) = 2p− p2

⇒ FH and FL have the same support, with co(supp(F )) = [b, b̄]

(‘Romeo and Juliet’ effect)

⇒ FH �FSD FL; note: FH(p) = FL(p) ⇔ FH(p) ∈ {0, 1}
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Acting upon Private Beliefs

• given ` & p, posterior belief is r = p/(p+ `(1 − p)), by Bayes rule

⇒ choose am ⇔ p ∈ [p̄m−1(`), p̄m(`)); private belief thresholds

satisfy p̄′m(`) > 0 and 0 ≡ p̄0(`) ≤ p̄1(`) ≤ . . . ≤ p̄M (`) ≡ 1

⇒ one takes action am with chance

ρ(m|s, `) ≡ F s(p̄m(`)) − F s(p̄m−1(`)) in state s ∈ {H,L}
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Figure 2: Individual Black Box. Individual n bases his action

decision mn on the public history (↔ likelihood ratio `n) and on his

private signal σn, implying a new continuation `n+1.
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Optimal action am:

`ng(σn) ∈ Im ≡
[

1−r̄m

r̄m

, 1−r̄m−1

r̄m−1

)

It happens with probability

ρ(m|H, `n) in state H and

ρ(m|L, `n) in state L

`n

σn

`n+1 = ϕ(1, `n)

`n+1 = ϕ(M, `n)Action aM

Action a1
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Corporate Learning as a Martingale Process

• Through the individuals’ private signals, their actions 〈mn〉 are

random, and so 〈qn〉 and 〈`n〉 are stochastic processes

• Individual n takes action amn
with chance ρ(mn|H, `n) in

state H

⇒ `n+1 = ϕ(mn, `n) ≡ `n
ρ(mn|L, `n)

ρ(mn|H, `n)
(Bayes’ Rule)

• We focus on odds 〈`n〉 rather than beliefs 〈qn〉. Why?

Because 〈`n〉 is a martingale conditional on state H:

E[`n+1 | H, `1, . . . `n] =
∑

m ρ(m|H, `n)`n
ρ(m|L,`n)
ρ(m|H,`n) = `n

• Since `n ≥ 0 always, MCT applies

=⇒ conditional on state H, 〈`n〉 converges (a.s.) to the random

variable limit `∞ = limn→∞ `n with (finite) values in [0,∞).

Pathological Outcomes of Observational Learning 9'

&

$

%

Corporate Learning as a Markov Process

• (mn, `n) is a Markov process on {1, 2, . . . ,M} × [0,∞)

(mn, `n) 7→ (mn+1, ϕ(mn+1, `n)) with chance ρ(mn+1|H, `n)

Theorem B-1 (Stationarity) If ρ and ϕ are continuous in `,

then any ˆ̀∈ supp(`∞) satisfies ∀m : ρ(m|H, ˆ̀) = 0 ∨ ϕ(m, ˆ̀) = ˆ̀

• Intuition: At any ˆ̀∈ supp(`∞), no further information can be

gleaned from any action observation

• Special case: Action absorbing basin for action am is

Jm = {` | ρ(m|H, `) = 1} (hence, Jm = {` | ρ(m|L, `) = 1})

? ˆ̀= ∞ is stationary, so can fully incorrect learning occur? No!

MCT rules out `n → ∞:
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Basic Concepts
• Private beliefs are

1. bounded if the private signal has a bounded likelihood range;

g(σ) and 1/g(σ) are bounded above

2. unbounded if the convex hull of the range of g is [0,∞)

• With bounded beliefs, there must exist action absorbing basins

for the two extreme actions, J1 and JM , and there may exist

absorbing basins for insurance actions

• With unbounded beliefs, action absorbing basins only exist for

extreme actions: J1 = {∞}, JM = {0}, with J2, . . . , JM−1 = ∅

• A cascade on action am as of individual n means that `n ∈ Jm

• A herd on action am as of individual n means that all individuals

n, n+ 1, . . . choose am (logically weaker than cascade)
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Figure 3: Continuations & Absorbing Basins. Bounded support

beliefs g(σ) = 1/2 + σ on [0, 1]; one insurance & 2 extreme actions.

[Martingale property ⇒ E(continuation likelihood) is on diagonal.]
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Figure 4: Continuations & Absorbing Basins, Revisited.

Bounded support beliefs g(σ) = 1/2+σ on [0, 1]; no insurance actions

(because preferences are different).
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4 MAIN RESULTS

Convergence of Beliefs

Theorem 1 (Limit Cascades) With bounded beliefs,

(1) `∞ ∈ J1 ∪ · · · ∪ JM almost surely

(2) `0 /∈ JM =⇒ `∞ ∈ JM a.s. is impossible (state H)

Theorem 2 (Complete Learning) With unbounded beliefs,

`n → 0 in state H, and `n → ∞ in state L.

Convergence of Actions

Theorem 3 (Herds) With bounded beliefs, a herd on some

action will almost surely arise in finite time. Unless there is a

cascade on the most profitable action aM from the very outset, a

herd can arise on an action other than aM .

Theorem 4 (Correct Herds) With unbounded beliefs,

eventually everyone takes the optimal action (almost surely).
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Why Limit Cascades?
• 〈`n〉 is a martingale =⇒ `∞ ≡ limn→∞ `n exists, by MCT

• ˆ̀∈ supp(`∞)

=⇒ ρ(m|H, ˆ̀) = 0 or ρ(m|H, ˆ̀) = ρ(m|L, ˆ̀), by stationarity

=⇒ any m with ρ(m|H, ˆ̀) > 0 satisfies ρ(m|H, ˆ̀) = 1, since

beliefs are shifted towards state H if state H is true
Why Incorrect Limit Cascades?
• in state H, must rule out `∞ ∈ JM almost surely

• If `∞ ∈ J1 with positive probability, we are done; else,

`n ≤ inf J1 <∞.

=⇒ E[`∞] = limn→∞E[`n] = `0 by Lebesgue’s Dominated

Convergence Theorem

• so `0 /∈ JM = [0, `] implies supp(`∞) ⊆ JM = [0, `] is impossible

Why Complete Learning?
• With unbounded support, limit cascades can only arise on

extreme actions a1 and aM (as J2, . . . , JM−1 = ∅)
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• ρ(m|H, ˆ̀) ∈ {0, 1} ⇐⇒ (m, ˆ̀) = (1, 0) or (m, ˆ̀) = (M,∞)

and martingale property of 〈`n〉 ⇒ Pr(`∞ = ∞) = 0 in state H

Why Herds?
• idea: convergence in beliefs =⇒ convergence in actions

• Indeed, we only have limit cascades and not cascades

? The Overturning Principle

If agent n optimally chooses action am, then, before observing

his private signal, agent n+ 1 would optimally choose am too

⇒ one contrary action will completely overturn the public belief

(`n+1 jumps far from `n)
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Figure 5: Continuations. Binary action examples with unbounded

private beliefs (left), and bounded private beliefs (right)

• illustrates the Overturning Principle, and

• shows that a cascade need not arise with bounded beliefs, and

• hints why complete learning arises in unbounded case and not in

the bounded case.
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Fast Learning in Belief Space
• If ∃ cont’s density fH of FH (and thus fL of FL), then

extreme signals are rare iff fH(b) = 0 or fL(b̄) = 0.

• `n converges to ˆ̀ at rate θ̄ ∈ [0, 1] if |`n − ˆ̀| = O(θn)

Lemma 9 (Exponential Convergence) Assume bounded

beliefs and that extreme signals are not rare. In any limit cascade,

if ˆ̀= limn→∞ `n then `n converges to ˆ̀ at some rate θ < 1.

Proof Idea: In a limit cascade and herd on action a1, with

`n ↑ ˆ̀= inf(J1), n chooses action a1 ⇔ n’s posterior < r̄1
⇔ p(σn) < p̄1(`n). Thus, with smooth private belief distributions,

`n+1 = ϕ(1, `n) = `n
FL(p̄1(`n))

FH(p̄1(`n))
(Bayes’ Rule)

=⇒ [ϕ`(1, ˆ̀) = θ < 1 ⇔ fL(p̄1(ˆ̀)) < fH(p̄1(ˆ̀))]

=⇒ ˆ̀− `n+1 = ˆ̀− ϕ(1, `n)
.
= ϕ`(1, ˆ̀)(ˆ̀− `n) = θ(ˆ̀− `n)
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Fast Learning in Action Space

• Bounded beliefs: If learning is exponentially fast, then a herd

arises in finite expected time, as every abortive herd ends fast:

- en = exit chance from temporary herd vanishes exponentially fast,

so conditional exit rates are boundedly positive

? The key to fast action convergence is how slowly error is

discovered by contrarians.

• Unbounded beliefs: extreme signals in favour of truth are rare if

FL(p) = O(pα) and 1 − FH(1 − p) = O(pα), α ≥ 1, small p

? Case 1: if extreme signals are rare, then ∃ (correct) herd in

infinite mean time (the truth is learned, but it takes forever)

- classic example: FL(p) = 2p− p2, FH(p) = p2

? Case 2: if extreme signals are not rare, so FL(p) = O(pα) and

1 − FH(1 − p) = O(pα), α < 1, then mean time to herd <∞
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5 NOISE

• Introduce small amount of i.i.d. noise: eg. crazy/misperceived

types, or trembling individuals

• this yields new transition chance ψ(m|s, `), where

- Trembling: fraction κmj should take aj but take am

ψ(m|H, `) = [1 − κm(`)]ρ(m|H, `) +
∑

j 6=m κ
m
j (`)ρ(j|H, `)

- Craziness (special case): fraction κm always takes action am

ψ(m|H, `) = κm + (1 −
∑M
j=1 κj)ρ(m|H, `)

Theorem 6 (Convergence in Beliefs) Let `n → `∞. With

bounded beliefs,

(1) `∞ ∈ J1 ∪ · · · ∪ JM almost surely;

(2) `0 /∈ JM =⇒ `∞ ∈ JM a.s. is impossible (state H)

With unbounded beliefs, `∞ = 0 almost surely (state H).
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Why Complete Learning with Unbounded Beliefs?

All ψ are bounded away from zero, so we must investigate

stationarity: ϕ(m|H, ˆ̀) = ˆ̀

ˆ̀κm + (1 −
∑M
m=1 κm)ρ(m|L, ˆ̀)

κm + (1 −
∑M
m=1 κm)ρ(m|H, ˆ̀)

= ˆ̀

=⇒ ρ(m|H, ˆ̀) = ρ(m|L, ˆ̀), which as before implies that they are

zero or one
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Figure 6: Continuations. The same basic two-action model, first

without and then with craziness.
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Convergence in Actions?
• With noise, the overturning principle fails, so noise-less proof

fails: ‘Contrary’ actions have little impact on public beliefs

(discounted as likely irrational actions)



Pathological Outcomes of Observational Learning 22'

&

$

%

? With bounded beliefs and non-rare extreme signals, ‘rational

herds’ still arise (a.s.)

• (first) Borel-Cantelli Lemma =⇒ an infinite string of rational

‘herd violators’ a.s. can’t occur if
∑∞
n=1 (1 − ρ(m|H, `n)) <∞

• martingale property ` ≡
∑M
m=1 ψ(m|H, `)ϕ(m, `) & AM-GM ⇒

1 =

M
∑

m=1

ψ(m|H, ˆ̀)ϕ′(m, ˆ̀) +

M
∑

m=1

ψ′(m|ˆ̀)ϕ(m, ˆ̀)

=
M
∑

m=1

ψ(m|H, ˆ̀)ϕ′(m, ˆ̀) >
M
∏

m=1

|ϕ′(m, ˆ̀)|ψ(m|H,ˆ̀) ≡ θ

at a stationary point ˆ̀, where ϕ(m, ˆ̀) = ˆ̀ for all m

• appendix: θ < 1 is the criterion for exponential stability of a

stochastic difference equation, i.e. |`n − ˆ̀| ≈ θn if `n → ˆ̀
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6 MULTIPLE INDIVIDUAL TYPES

• Assume T types of individuals, spread i.i.d. in sequence, with

state-dependent preferences (noise = special case)

- new transition probability: ψ(m|H, `) =
∑T
t=1 λ

tρt(m|H, `)

- history is informative with distinct type frequencies λ1, . . . , λT

• At a confounded learning point `∗, no inference can be drawn

from `∗ as each action occurs with equal chance in states H, L

⇒ ψ(m|H, `∗) = ψ(m|L, `∗), so `∗ is a stationary point of 〈`n〉
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Figure 7: Confounded Learning Point. At `∗, no inference can

be drawn about the true state of the world with two types A and B.

(Here, a2 �A a1 and a1 �B a2 in state H; the reverse in state L.)
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Figure 8: Confounded Learning Point. A fixpoint argument

suggests the existence of a confounded learning point
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• Still, does confounded learning occur, i.e. `n → `∗ occur?

Yes! Just use local stability criterion (?).

• Even with unbounded beliefs, complete learning need no longer

obtain: learning may die out, with `∞ unfocused!

• Private signals become totally decisive for individual actions,

whereas in a cascade, private signals are ignored
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7 LINK TO EXPERIMENTATION

LITERATURE

• We can map the pathological outcomes of social learning into

the standard outcomes of single person experimentation

• Incorrect herd ↔ settle on suboptimal action, the learning

process stops short of revealing the true state (eg. Rothschild

(1974) and the two-armed bandit problem)

• Confounded learning ↔ an outcome where statistics are still

generated, but they are identically distributed in the two states

- Similar to the learning problem in McLennan (1984)

A monopolist faces one of two possible demand curves;

consumers arrive one per period, and buy with chances

q = a− bp or q = A−Bp

• Easley-Kiefer (1988) calls such actions potentially confounding ,
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i.e. optimal for unfocused beliefs for any experiment realization

- But EK show that this generically doesn’t exist for finite state

and action spaces!

⇒ so how do we get herding and confounded learning?

⇒ Must write the herding model as a single person

experimentation problem
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How to replace everyone with a single experimenter

• new state space: Θ = {H,L}

• new action space: the compact set of n private belief thresholds

X = {x ∈ [0, 1]M |0 ≤ x1 ≤ . . . ≤ xM = 1} (NOT finite)

• discount factor = 0

• new random expt outcome, or observable signal: old action

chosen in herding model from {1, 2, . . . ,M}.

• Given the action x chosen, the probability that signal m occurs

is ρ(m|s, x) = F s(xm) − F s(xm−1) in state s without noise,

and more generally ψ(m|s, x) with noise.

• to simulate two types, let experimenter choose two sets of

thresholds, and not observe which one determines the observed

signal


