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1 OVERVIEW

Individuals sequentially choose an action based on private

information, and observation of all predecessors’ actions
—> not simple statistical learning

pure informational externality; no economic externalities
Banerjee (1992); BHW (1992)

e Two spins on their pathological learning outcome:

1. Belief Convergence, or Cascades: Public history eventually
becomes so informative that individuals disregard their
private information = public beliefs enter an absorbing
state, possibly wrong one

2. Action Convergence, or Herds: Eventually, all individuals
will take the same action, possibly wrong one
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1. General private signal space: With continuous signals, herds

e Generalization of the herding model

generically may exist without cascades

2. Unbounded private signal strength: 3 complete learning in
belief and action space = only a correct herd obtains, and
herding pathology disappears!

3. Addition of a little noise: This does away with the
‘overturning principle’ (that one single individual’s contrary
action has drastic effects)

4. Multiple preference types: New pathology confounded
learning arises, even if private signals have unbounded
strength

5. Link to experimentation literature: herding is an example of
optimal single agent learning model
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2 THE STANDARD MODEL

e Infinite sequence of individuals 1,2, ... who act sequentially, in

an exogenous order
e Two underlying states of the world, H and L (assume H)

e Private conditionally i.i.d. signals o,, (with no perfectly
revealing signals) & g(o,,) = private L/H odds

e Actions aq,...,ay with state dependent payoffs
e Individuals have identical preferences over outcomes

e They observe the full action history, and make an inference
about other individuals’ signals, updating their own posterior

e The observed history of the first n — 1 actions leads to a public
belief q, that state is H, and a likelihood ratio £, = (1 —qn)/qn
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Figure 1: The Individual Decision Problem: Frontier of Ex-

pected Payoffs and Posterior Thresholds.
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Private Belief Distributions
o if H L are WLOG ex ante equilikely, then individual n has the

interim private belief p = p(oy,)=1/(g(0,,) + 1) that the state is H

e dist'n of private beliefs p = p(o) is FH or F¥
Q: What is the likelihood of L/H given my private beliefs?

* No Introspection Condition:
Any two c.d.f.’s can be rationalized iff dFF/dFH = (1 —p)/p
eg. F™(p) = p* and F"(p) = 2p — p°
= FH and F* have the same support, with co(supp(F)) = [b, ]
(‘Romeo and Juliet’ effect)
= FH = psp FE; note: FH(p) = FE(p) & FH(p) € {0,1}

N /




Pathological Outcomes of Observational Learning

Acting upon Private Beliefs
e given ¢ & p, posterior belief is r = p/(p + ¢(1 — p)), by Bayes rule

= choose a,, < p € [Pm—1(£),Dm({)); private belief thresholds
satisfy p/, (£) >0 and 0 = po(£) < p1(£) < ... <pu(f) =1

= one takes action a,,, with chance

p(m|s, 0) = F*(pm(f)) — F*(pm—1(¢)) in state s € {H, L}

A
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Figure 2: Individual Black Box. Individual n bases his action
decision m,, on the public history (« likelihood ratio ¢,,) and on his

private signal o,,, implying a new continuation ¢, .

Optimal action a,,: Action ay [ 4,1 = ¢(1,£,)

lng(oy) € I, = [ﬂ, 1—7"_—1>

Tm Tm—1

It happens with probability
p(m|H,¢,) in state H and

p(m|L,¢,) in state L :
Action ap [ 4,1 = (M, {,)
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Corporate Learning as a Martingale Process

e Through the individuals’ private signals, their actions (m,,) are
random, and so (g,) and (¢,) are stochastic processes

e Individual n takes action a,,, with chance p(m,|H,¥¢,) in

state H
= lpng1 = p(mn, ly) = Enw
p(mn|H, )
e We focus on odds (¢,,) rather than beliefs (g, ). Why?
Because (¢,,) is a martingale conditional on state H:

E[gn-i-l ‘ H7€17"'£n] = Zmp(m’H,&an% ={y

(Bayes’ Rule)

e Since /,, > 0 always, MCT applies

— conditional on state H, ({,,) converges (a.s.) to the random

variable limit ¢, = lim,, . ¢, with (finite) values in [0, 00).
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Corporate Learning as a Markov Process

e (mp,4,) is a Markov process on {1,2,..., M} x [0, 00)
(mp, ln) — (Mpy1, (Mpt1, £n)) with chance p(my,4+1|H, 4,)

Theorem B-1 (Stationarity) If p and ¢ are continuous in ¢,
then any 0 € supp(lo) satisfies Ym : p(m|H, ) =0V o(m,0) =1
e Intuition: At any / € supp(£s), no further information can be
gleaned from any action observation
e Special case: Action absorbing basin for action a., is
Im ={€| p(m|H,¢) =1} (hence, J,, = {¢|p(m|L,¢) =1})
* [ = oo is stationary, so can fully incorrect learning occur? No!
MCT rules out ¢,, — oo:
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Basic Concepts
e Private beliefs are

1. bounded if the private signal has a bounded likelihood range;
g(o) and 1/g(o) are bounded above

2. unbounded if the convex hull of the range of g is [0, c0)

e With bounded beliefs, there must exist action absorbing basins
for the two extreme actions, J; and Jy;, and there may exist
absorbing basins for insurance actions

e With unbounded beliefs, action absorbing basins only exist for
extreme actions: Ji = {oo}, Jyy = {0}, with Ja,...,Jy—1 =@
e A cascade on action a,, as of individual n means that ¢,, € J,,

e A herd on action a,, as of individual n means that all individuals
n,n+ 1,... choose a,, (logically weaker than cascade)

N /
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Figure 3: Continuations & Absorbing Basins. Bounded support

beliefs g(0) = 1/2 + o on [0, 1]; one insurance & 2 extreme actions.
[Martingale property = E(continuation likelihood) is on diagonal.]

€n+1
A
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Figure 4: Continuations & Absorbing Basins, Revisited.
Bounded support beliefs g(o) = 1/240 on [0, 1]; no insurance actions
(because preferences are different).

gn—&—l
A
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/4 MAIN RESULTS \

CONVERGENCE OF BELIEFS

Theorem 1 (Limit Cascades) With bounded beliefs,
(1) oo € Jy U---U Jps almost surely
(2) by & Jyg = oo € Jpr a.s. is impossible (state H )

Theorem 2 (Complete Learning) With unbounded beliefs,
l, — 0 in state H, and {,, — oo in state L.

CONVERGENCE OF ACTIONS

Theorem 3 (Herds) With bounded beliefs, a herd on some
action will almost surely arise in finite time. Unless there is a
cascade on the most profitable action ay; from the very outset, a

herd can arise on an action other than a,;.

Theorem 4 (Correct Herds) With unbounded beliefs,

Keventually everyone takes the optimal action (almost surely). j

12
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e (/) is a martingale = (o, = lim,,_, £, exists, by MCT

o /e supp(loo)
— p(m|H, ) =0 or p(m|H, ) = p(m|L,{), by stationarity
— any m with p(m|H,¢) > 0 satisfies p(m|H, {) = 1, since
beliefs are shifted towards state H if state H is true

Why Incorrect Limit Cascades?
e in state H, must rule out . € Jy; almost surely

e If /., € J; with positive probability, we are done; else,
l, <inf J; < oo.
— FE[lo] = lim,, o E[l,] = ¢y by Lebesgue’s Dominated
Convergence Theorem

e s0 {y ¢ Jy = [0,£] implies supp(£oo) € Jar = [0, £] is impossible

Why Complete Learning?
e With unbounded support, limit cascades can only arise on

K extreme actions a; and aps (as Ja,...,JJy—1 = 9) J
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e p(m|H,l) € {0,1} < (m,{) = (1,0) or (m,0) = (M, c0)
and martingale property of (¢,,) = Pr({- = co) =0 in state H

Why Herds?
e idea: convergence in beliefs = convergence in actions

e Indeed, we only have limit cascades and not cascades
* The Overturning Principle
If agent n optimally chooses action a,,, then, before observing
his private signal, agent n + 1 would optimally choose a,, too
= one contrary action will completely overturn the public belief

(£y+1 jumps far from £, )

N /
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Figure 5: Continuations. Binary action examples with unbounded
private beliefs (left), and bounded private beliefs (right)

e illustrates the Overturning Principle, and

e shows that a cascade need not arise with bounded beliefs, and

e hints why complete learning arises in unbounded case and not in

the bounded case

N | /

Pathological Outcomes of Observational Learning

/Fast Learning in Belief Space \

e If 3 cont’s density f of F# (and thus f¥ of F¥), then
extreme signals are rare iff fH(b) =0 or fL(b) = 0.
e £, converges to { at rate 6 € [0,1] if |¢,, — | = O(™)

Lemma 9 (Exponential Convergence) Assume bounded
beliefs and that extreme signals are not rare. In any limit cascade,

ifé = lim,, .o £y, then £, converges to ? at some rate 6 < 1.

Proof Idea: In a limit cascade and herd on action a, with
n 1 0 =inf(J1), n chooses action a; < n’s posterior <
< p(oy) < p1(£y). Thus, with smooth private belief distributions,

FE(p1(£n))

gn - lvgn :En —
a1 = o) =bgme @)

(Bayes’ Rule)

)
@

= [pe(1,0) =0 <1 f(p
po(1

) < A B1(0))]
=l — L1 =0 —p(1,4,) = B

1O —0,)=0(0 —1y,)

N /
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Fast Learning in Action Space
e Bounded beliefs: If learning is exponentially fast, then a herd

arises in finite expected time, as every abortive herd ends fast:

- en = exit chance from temporary herd vanishes exponentially fast,

so conditional exit rates are boundedly positive

* The key to fast action convergence is how slowly error is

discovered by contrarians.

e Unbounded beliefs: extreme signals in favour of truth are rare if
FL(p)=0(@p*) and 1 — FE(1 — p) = O(p®), a > 1, small p

*x CASE 1: if extreme signals are rare, then 3 (correct) herd in

infinite mean time (the truth is learned, but it takes forever)

- classic example: FL(p) =2p —p? FH(p) = p?
x CASE 2: if extreme signals are not rare, so F'X(p) = O(p®) and

1—F2(1 —p)=0(p*), a < 1, then mean time to herd < oo

N /
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5 NOISE \

e Introduce small amount of i.i.d. noise: eg. crazy/misperceived
types, or trembling individuals
e this yields new transition chance i (m|s, ¢), where
- Trembling: fraction 7" should take a; but take a,
(m|H, ) = [1 = km(O)]p(m|H, L) + 32, w7 (0)p(j1H, £)
- Craziness (special case): fraction k,, always takes action a,,
G(m| H,0) = b + (1= 3252, ) p(m| H0)
Theorem 6 (Convergence in Beliefs) Let ¢,, — (o,. With
bounded beliefs,

(1) boo € J1U---U Jpr almost surely;
(2) by & Jyp = loo € Jpr a.s. is impossible (state H)

With unbounded beliefs, {~, = 0 almost surely (state H ).

/
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Why Complete Learning with Unbounded Beliefs?
All ¢ are bounded away from zero, so we must investigate
stationarity: p(m|H,0) =0

o+ (=S wdo(mIL D)
Km + (1 - ZM /{m)p(mlﬂa 6)

m=1

— p(m|H,¢) = p(m|L, /), which as before implies that they are

Zero or one

20
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without and then with craziness.

45° A * 15°

Figure 6: Continuations. The same basic two-action model, first

A

©(2,:)

;En

=£n

(discounted as likely irrational actions)

Convergence in Actions?
e With noise, the overturning principle fails, so noise-less proof
fails: ‘Contrary’ actions have little impact on public beliefs

/
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* With bounded beliefs and non-rare extreme signals, ‘rational
o (first) Borel-Cantelli Lemma = an infinite string of rational

e martingale property ¢ = an\le (m|H, 0)p(m, ) & AM-GM =

e appendix: # < 1 is the criterion for exponential stability of a

~

herds’ still arise (a.s.)

‘herd violators’ a.s. can’t occur if Y~ (1 — p(m|H,{,,)) < oo

M M
> p(m|H, 0@ (m,0) + Y ¢ (m|0)p(m, )
m=1 m=1
M . M . R
= > w(mlH, )¢ (m,0) > [] ¢ (m, )]0 =0
m=1 m=1

at a stationary point ¢, where o(m, @) ={ for all m

stochastic difference equation, i.e. |¢, — €| ~ 0™ if ¢, — ¢

J
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MULTIPLE INDIVIDUAL TYPES

Assume T types of individuals, spread i.i.d. in sequence, with
state-dependent preferences (noise = special case)

new transition probability: ¢ (m|H, ) = S>/_, A pt(m|H, ¢)
history is informative with distinct type frequencies A!,... AT

At a confounded learning point £*, no inference can be drawn

from ¢* as each action occurs with equal chance in states H, L

= (m|H, ") = p(m|L, £*), so £* is a stationary point of (¢,,)

/
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Figure 7: Confounded Learning Point. At ¢*, no inference can
be drawn about the true state of the world with two types A and B.
(Here, as >4 a1 and a1 >=p as in state H; the reverse in state L.)

chance
1 A
Y(1|L, £) Y(1|H, 1)
A4 -
O

\_ r ! /
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Figure 8: Confounded Learning Point. A fixpoint argument
suggests the existence of a confounded learning point

A

a0 O
-——
V takes as V takes aq ——
U takes a1 U takes as

N /
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Still, does confounded learning occur, i.e. £, — £* occur?

Yes! Just use local stability criterion (x).

Even with unbounded beliefs, complete learning need no longer
obtain: learning may die out, with /., unfocused!

Private signals become totally decisive for individual actions,
whereas in a cascade, private signals are ignored
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LINK TO EXPERIMENTATION \
LITERATURE

We can map the pathological outcomes of social learning into
the standard outcomes of single person experimentation
Incorrect herd < settle on suboptimal action, the learning
process stops short of revealing the true state (eg. Rothschild
(1974) and the two-armed bandit problem)

Confounded learning <+ an outcome where statistics are still
generated, but they are identically distributed in the two states

Similar to the learning problem in McLennan (1984)

A monopolist faces one of two possible demand curves;
consumers arrive one per period, and buy with chances
g=a—bporq=A—DBp

Easley-Kiefer (1988) calls such actions potentially confoundmgy

26
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i.e. optimal for unfocused beliefs for any experiment realization

But EK show that this generically doesn’t exist for finite state
and action spaces!

= so how do we get herding and confounded learning?

= Must write the herding model as a single person

experimentation problem
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How to replace everyone with a single experimenter

~

new state space: © = {H, L}

new action space: the compact set of n private belief thresholds
X={ze0,1]M0< a2 <...<xp =1} (NOT finite)
discount factor = 0

new random expt outcome, or observable signal: old action
chosen in herding model from {1,2,..., M}.

Given the action x chosen, the probability that signal m occurs
is p(m|s,z) = F*(z,,) — F*(x;—1) in state s without noise,
and more generally ¢(m|s, z) with noise.

to simulate two types, let experimenter choose two sets of

thresholds, and not observe which one determines the observed

signal

/
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