Lones Smith Massachusetts Institute of Technology

> Peter Sørensen Nuffield College and M.I.T.

> > 1996

(original version July, 1994)

Pathological Outcomes of Observational Learning

1

1 OVERVIEW

- Individuals sequentially choose an action based on private information, and observation of all predecessors' *actions* ⇒ not simple statistical learning
- pure informational externality; no economic externalities
- Banerjee (1992); BHW (1992)
- Two spins on their pathological learning outcome:
 - 1. Belief Convergence, or Cascades: Public history eventually becomes so informative that individuals disregard their private information \Rightarrow public beliefs enter an absorbing state, possibly wrong one
 - 2. Action Convergence, or Herds: Eventually, all individuals will take the same action, possibly wrong one

- Generalization of the herding model
 - 1. General private *signal space:* With continuous signals, herds generically may exist without cascades
 - 2. Unbounded private signal strength: \exists complete learning in belief and action space \Rightarrow only a correct herd obtains, and herding pathology disappears!
 - 3. Addition of a little *noise*: This does away with the 'overturning principle' (that one single individual's contrary action has drastic effects)
 - 4. *Multiple preference types*: New pathology *confounded learning* arises, even if private signals have unbounded strength
 - 5. Link to experimentation literature: herding is an example of optimal single agent learning model

 $\mathbf{2}$

3

THE STANDARD MODEL

- Infinite sequence of individuals 1, 2, ... who act sequentially, in an exogenous order
- Two underlying states of the world, H and L (assume H)
- Private conditionally i.i.d. signals σ_n (with no perfectly revealing signals) & $g(\sigma_n) = \text{private } L/H$ odds
- Actions a_1, \ldots, a_M with state dependent payoffs
- Individuals have identical preferences over outcomes
- They observe the full action history, and make an inference about other individuals' signals, updating their own posterior
- The observed history of the first n-1 actions leads to a *public* belief q_n that state is H, and a *likelihood* ratio $\ell_n = (1-q_n)/q_n$

5

Private Belief Distributions

- if H, L are WLOG ex ante equilikely, then individual n has the interim private belief $p \equiv p(\sigma_n) = 1/(g(\sigma_n) + 1)$ that the state is H
- dist'n of private beliefs p = p(σ) is F^H or F^L
 Q: What is the likelihood of L/H given my private beliefs?
- ★ No Introspection Condition: Any two c.d.f.'s can be rationalized iff $dF^L/dF^H = (1-p)/p$ eg. $F^H(p) = p^2$ and $F^L(p) = 2p - p^2$ $\Rightarrow F^H$ and F^L have the same support, with $co(supp(F)) = [\underline{b}, \overline{b}]$ ('Romeo and Juliet' effect) $\Rightarrow F^H \succ_{FSD} F^L$; note: $F^H(p) = F^L(p) \Leftrightarrow F^H(p) \in \{0, 1\}$

Figure 2: Individual Black Box. Individual n bases his action decision m_n on the public history (\leftrightarrow likelihood ratio ℓ_n) and on his private signal σ_n , implying a new continuation ℓ_{n+1} .

Corporate Learning as a Martingale Process

- Through the individuals' private signals, their actions $\langle m_n \rangle$ are random, and so $\langle q_n \rangle$ and $\langle \ell_n \rangle$ are stochastic processes
- Individual *n* takes action a_{m_n} with chance $\rho(m_n|H, \ell_n)$ in state *H*

$$\Rightarrow \ell_{n+1} = \varphi(m_n, \ell_n) \equiv \ell_n \frac{\rho(m_n | L, \ell_n)}{\rho(m_n | H, \ell_n)} \quad \text{(Bayes' Rule)}$$

- We focus on odds $\langle \ell_n \rangle$ rather than beliefs $\langle q_n \rangle$. Why? Because $\langle \ell_n \rangle$ is a martingale conditional on state H: $E[\ell_{n+1} \mid H, \ell_1, \dots \ell_n] = \sum_m \rho(m|H, \ell_n) \ell_n \frac{\rho(m|L, \ell_n)}{\rho(m|H, \ell_n)} = \ell_n$
- Since $\ell_n \ge 0$ always, MCT applies
 - \implies conditional on state H, $\langle \ell_n \rangle$ converges (a.s.) to the <u>random</u> <u>variable</u> limit $\ell_{\infty} = \lim_{n \to \infty} \ell_n$ with (<u>finite</u>) values in $[0, \infty)$.

Pathological Outcomes of Observational Learning

9

Corporate Learning as a Markov Process

• (m_n, ℓ_n) is a Markov process on $\{1, 2, \dots, M\} \times [0, \infty)$ $(m_n, \ell_n) \mapsto (m_{n+1}, \varphi(m_{n+1}, \ell_n))$ with chance $\rho(m_{n+1}|H, \ell_n)$

Theorem B-1 (Stationarity) If ρ and φ are continuous in ℓ , then any $\hat{\ell} \in \text{supp}(\ell_{\infty})$ satisfies $\forall m : \rho(m|H, \hat{\ell}) = 0 \lor \varphi(m, \hat{\ell}) = \hat{\ell}$

- Intuition: At any $\hat{\ell} \in \text{supp}(\ell_{\infty})$, no further information can be gleaned from any action observation
- Special case: Action absorbing basin for action a_m is $J_m = \{\ell \mid \rho(m|H, \ell) = 1\}$ (hence, $J_m = \{\ell \mid \rho(m|L, \ell) = 1\}$)
- * $\hat{\ell} = \infty$ is stationary, so can fully incorrect learning occur? No! MCT rules out $\ell_n \to \infty$:

Basic Concepts

• Private beliefs are

1. bounded if the private signal has a bounded likelihood range; $g(\sigma)$ and $1/g(\sigma)$ are bounded above

2. unbounded if the convex hull of the range of g is $[0,\infty)$

- With bounded beliefs, there *must* exist action absorbing basins for the two extreme actions, J_1 and J_M , and there *may* exist absorbing basins for insurance actions
- With unbounded beliefs, action absorbing basins only exist for extreme actions: $J_1 = \{\infty\}, J_M = \{0\}$, with $J_2, \ldots, J_{M-1} = \emptyset$
- A cascade on action a_m as of individual n means that $\ell_n \in J_m$
- A herd on action a_m as of individual n means that all individuals $n, n+1, \ldots$ choose a_m (logically weaker than cascade)

Pathological Outcomes of Observational Learning

4 MAIN RESULTS

Convergence of Beliefs

Theorem 1 (Limit Cascades) With bounded beliefs, (1) $\ell_{\infty} \in J_1 \cup \cdots \cup J_M$ almost surely (2) $\ell_0 \notin J_M \Longrightarrow \ell_{\infty} \in J_M$ a.s. is impossible (state H)

Theorem 2 (Complete Learning) With unbounded beliefs, $\ell_n \to 0$ in state H, and $\ell_n \to \infty$ in state L.

CONVERGENCE OF ACTIONS

Theorem 3 (Herds) With bounded beliefs, a herd on some action will almost surely arise in finite time. Unless there is a cascade on the most profitable action a_M from the very outset, a herd can arise on an action other than a_M .

Theorem 4 (Correct Herds) With unbounded beliefs, eventually everyone takes the optimal action (almost surely).

Why Limit Cascades? • $\langle \ell_n \rangle$ is a martingale $\Longrightarrow \ell_\infty \equiv \lim_{n \to \infty} \ell_n$ exists, by MCT • $\hat{\ell} \in \operatorname{supp}(\ell_{\infty})$ $\implies \rho(m|H, \hat{\ell}) = 0 \text{ or } \rho(m|H, \hat{\ell}) = \rho(m|L, \hat{\ell}), \text{ by stationarity}$ \implies any *m* with $\rho(m|H, \hat{\ell}) > 0$ satisfies $\rho(m|H, \hat{\ell}) = 1$, since beliefs are shifted towards state H if state H is true Why Incorrect Limit Cascades? • in state H, must rule out $\ell_{\infty} \in J_M$ almost surely • If $\ell_{\infty} \in J_1$ with positive probability, we are done; else, $\ell_n \leq \inf J_1 < \infty.$ $\implies E[\ell_{\infty}] = \lim_{n \to \infty} E[\ell_n] = \ell_0$ by Lebesgue's Dominated Convergence Theorem • so $\ell_0 \notin J_M = [0, \underline{\ell}]$ implies $\operatorname{supp}(\ell_\infty) \subseteq J_M = [0, \underline{\ell}]$ is impossible Why Complete Learning? • With unbounded support, limit cascades can only arise on extreme actions a_1 and a_M (as $J_2, \ldots, J_{M-1} = \emptyset$)

Pathological Outcomes of Observational Learning

ρ(m|H, ℓ) ∈ {0,1} ⇔ (m, ℓ) = (1,0) or (m, ℓ) = (M,∞) and martingale property of ⟨ℓ_n⟩ ⇒ Pr(ℓ_∞ = ∞) = 0 in state H
 Why Herds?

- idea: convergence in beliefs \implies convergence in actions
- Indeed, we only have limit cascades and not cascades
- * The Overturning Principle If agent n optimally chooses action a_m , then, before observing his private signal, agent n + 1 would optimally choose a_m too
- ⇒ one contrary action will completely overturn the public belief $(\ell_{n+1} \text{ jumps far from } \ell_n)$

Figure 5: **Continuations.** Binary action examples with unbounded private beliefs (left), and bounded private beliefs (right)

- illustrates the Overturning Principle, and
- shows that a cascade need not arise with bounded beliefs, and
- hints why complete learning arises in unbounded case and not in the bounded case.

Pathological Outcomes of Observational Learning

17

Fast Learning in Belief Space

- If \exists cont's density f^H of F^H (and thus f^L of F^L), then extreme signals are rare iff $f^H(\underline{b}) = 0$ or $f^L(\overline{b}) = 0$.
- ℓ_n converges to $\hat{\ell}$ at rate $\bar{\theta} \in [0,1]$ if $|\ell_n \hat{\ell}| = O(\theta^n)$

Lemma 9 (Exponential Convergence) Assume bounded beliefs and that extreme signals are not rare. In any limit cascade, if $\hat{\ell} = \lim_{n \to \infty} \ell_n$ then ℓ_n converges to $\hat{\ell}$ at some rate $\theta < 1$.

Proof Idea: In a limit cascade and herd on action a_1 , with $\ell_n \uparrow \hat{\ell} = \inf(J_1), n$ chooses action $a_1 \Leftrightarrow n$'s posterior $\langle \bar{r}_1 \Leftrightarrow p(\sigma_n) \langle \bar{p}_1(\ell_n) \rangle$. Thus, with smooth private belief distributions,

$$\ell_{n+1} = \varphi(1, \ell_n) = \ell_n \frac{F^L(\bar{p}_1(\ell_n))}{F^H(\bar{p}_1(\ell_n))} \quad \text{(Bayes' Rule)}$$
$$\implies [\varphi_\ell(1, \hat{\ell}) = \theta < 1 \Leftrightarrow f^L(\bar{p}_1(\hat{\ell})) < f^H(\bar{p}_1(\hat{\ell}))]$$
$$\implies \hat{\ell} - \ell_{n+1} = \hat{\ell} - \varphi(1, \ell_n) \doteq \varphi_\ell(1, \hat{\ell})(\hat{\ell} - \ell_n) = \theta(\hat{\ell} - \ell_n)$$

Fast Learning in Action Space

- Bounded beliefs: If learning is exponentially fast, then a herd arises in finite expected time, as every abortive herd ends fast:
- $e_n = exit$ chance from temporary herd vanishes exponentially fast, so *conditional* exit rates are boundedly positive
- * The key to fast action convergence is how slowly error is discovered by contrarians.
- Unbounded beliefs: extreme signals in favour of truth are rare if $F^L(p) = O(p^{\alpha})$ and $1 F^H(1-p) = O(p^{\alpha})$, $\alpha \ge 1$, small p
- ★ CASE 1: if extreme signals are rare, then \exists (correct) herd in infinite mean time (the truth is learned, but it takes forever)
- classic example: $F^L(p) = 2p p^2, F^H(p) = p^2$

* CASE 2: if extreme signals are not rare, so $F^L(p) = O(p^{\alpha})$ and

 $1 - F^H(1-p) = O(p^{\alpha}), \alpha < 1$, then mean time to herd $< \infty$

Pathological Outcomes of Observational Learning

5 NOISE

- Introduce small amount of i.i.d. noise: eg. crazy/misperceived types, or trembling individuals
- this yields new transition chance $\psi(m|s, \ell)$, where
- Trembling: fraction κ_j^m should take a_j but take a_m $\psi(m|H, \ell) = [1 - \kappa_m(\ell)]\rho(m|H, \ell) + \sum_{j \neq m} \kappa_j^m(\ell)\rho(j|H, \ell)$
- Craziness (special case): fraction κ_m always takes action a_m $\psi(m|H, \ell) = \kappa_m + (1 - \sum_{j=1}^M \kappa_j)\rho(m|H, \ell)$

Theorem 6 (Convergence in Beliefs) Let $\ell_n \to \ell_\infty$. With bounded beliefs, (1) $\ell_\infty \in J_1 \cup \cdots \cup J_M$ almost surely;

(2) $\ell_0 \notin J_M \Longrightarrow \ell_\infty \in J_M$ a.s. is impossible (state H)

With unbounded beliefs, $\ell_{\infty} = 0$ almost surely (state H).

Why Complete Learning with Unbounded Beliefs?

All ψ are bounded away from zero, so we must investigate stationarity: $\varphi(m|H, \hat{\ell}) = \hat{\ell}$

$$\hat{\ell} \frac{\kappa_m + (1 - \sum_{m=1}^M \kappa_m) \rho(m|L, \hat{\ell})}{\kappa_m + (1 - \sum_{m=1}^M \kappa_m) \rho(m|H, \hat{\ell})} = \hat{\ell}$$

 $\Longrightarrow \rho(m|H, \hat{\ell}) = \rho(m|L, \hat{\ell}),$ which as before implies that they are zero or one

Pathological Outcomes of Observational Learning

Figure 6: Continuations. The same basic two-action model, first without and then with craziness. $\begin{pmatrix} n+1 & & & \\ & &$ herds' still arise (a.s.)

- (first) Borel-Cantelli Lemma \implies an infinite string of rational 'herd violators' a.s. can't occur if $\sum_{n=1}^{\infty} (1 \rho(m|H, \ell_n)) < \infty$
- martingale property $\ell \equiv \sum_{m=1}^M \psi(m|H,\ell) \varphi(m,\ell)$ & AM-GM \Rightarrow

$$1 = \sum_{m=1}^{M} \psi(m|H, \hat{\ell}) \varphi'(m, \hat{\ell}) + \sum_{m=1}^{M} \psi'(m|\hat{\ell}) \varphi(m, \hat{\ell}) \\ = \sum_{m=1}^{M} \psi(m|H, \hat{\ell}) \varphi'(m, \hat{\ell}) > \prod_{m=1}^{M} |\varphi'(m, \hat{\ell})|^{\psi(m|H, \hat{\ell})} \equiv \theta$$

at a stationary point $\hat{\ell}$, where $\varphi(m, \hat{\ell}) = \hat{\ell}$ for all m

• appendix: $\theta < 1$ is the criterion for exponential stability of a stochastic difference equation, i.e. $|\ell_n - \hat{\ell}| \approx \theta^n$ if $\ell_n \to \hat{\ell}$

Pathological Outcomes of Observational Learning

23

6 MULTIPLE INDIVIDUAL TYPES

- Assume T types of individuals, spread i.i.d. in sequence, with state-dependent preferences (noise = special case)
- new transition probability: $\psi(m|H,\ell) = \sum_{t=1}^T \lambda^t \rho^t(m|H,\ell)$
- history is informative with distinct type frequencies $\lambda^1, \ldots, \lambda^T$
- At a confounded learning point ℓ*, no inference can be drawn from ℓ* as each action occurs with equal chance in states H, L
 ⇒ ψ(m|H, ℓ*) = ψ(m|L, ℓ*), so ℓ* is a stationary point of ⟨ℓ_n⟩

- Still, does confounded learning occur, i.e. l_n → l* occur?
 Yes! Just use local stability criterion (*).
- Even with unbounded beliefs, complete learning need no longer obtain: learning may die out, with ℓ_{∞} unfocused!
- Private signals become totally decisive for individual actions, whereas in a cascade, private signals are ignored

7 LINK TO EXPERIMENTATION LITERATURE

- We can map the pathological outcomes of social learning into the standard outcomes of single person experimentation
- Incorrect herd ↔ settle on suboptimal action, the learning process stops short of revealing the true state (eg. Rothschild (1974) and the two-armed bandit problem)
- Confounded learning ↔ an outcome where statistics are still generated, but they are identically distributed in the two states
- Similar to the learning problem in McLennan (1984)
 - A monopolist faces one of two possible demand curves; consumers arrive one per period, and buy with chances q = a - bp or q = A - Bp
- Easley-Kiefer (1988) calls such actions *potentially confounding*,

- But EK show that this generically doesn't exist for finite state and action spaces!

 \Rightarrow so how do we get herding and confounded learning?

 \Rightarrow Must write the herding model as a single person experimentation problem

Pathological Outcomes of Observational Learning

```
29
```

How to replace everyone with a single experimenter

- new state space: $\Theta = \{H, L\}$
- new action space: the compact set of *n* private belief thresholds $X = \{x \in [0,1]^M | 0 \le x_1 \le \ldots \le x_M = 1\} \text{ (NOT finite)}$
- discount factor = 0
- new random expt outcome, or observable signal: old action chosen in herding model from $\{1, 2, \ldots, M\}$.
- Given the action x chosen, the probability that signal m occurs is $\rho(m|s, x) = F^s(x_m) - F^s(x_{m-1})$ in state s without noise, and more generally $\psi(m|s, x)$ with noise.
- to simulate two types, let experimenter choose two sets of thresholds, and not observe which one determines the observed signal