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Informational Inertia

» Standard statistical learning is markovian: the order you see
signals is irrelevent. If you helicopter drop into the model, you
can proceed just learning the current beliefs

» Social learning is highly path dependent: the action order
matters

» Posterior monotonicity (PM) asserts:

prior belief rises — Joe's posterior belief rises, for a given action by lke.

» Posterior monotonicity can fail: actions = endogenous signals

» This is true for statistical learning

» At higher prior beliefs, Ike takes any action for less favorable
private signals = his action less strongly endorses high state.

» For some signal distributions, this swamps the direct effect of a
higher prior public belief.
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Informational Inertia

» States § = L, H with private belief p with cdfs Fy(p), Fr(p)

» Signal log-likelihood ratio A = log(dFy/dF;) has cdf
Gu(A), GL()) in state = L, H.

» This is an equivalent formulation of a signal

» No Introspection Principle:

dGH/dGL = e)‘.

> Assume three actions: sell, hold, and buy.

> lke's actions are optimal for posterior log likelihood ratios
Ao + log[p/(1 = p)] in (=00, A), (A, A), and (A, 0)
» If Ike (with prior A\g) buys, then Joe's posterior is

J£°, dGH(N) S5, €dGL()
Mo+ OIS = g e
S5 d6L(A) S5 d6L(A)
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) is (strictly) decreasing in ¢
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Private Signals and Private Beliefs

» Two equilikely states § = L, H

» Signal Quality Model: Consider two possible statistically
true statements “with chance g, the state is high/low”, where
the signal quality q is distributed over (0,1) with density ~.

» o =oyorop, where Plc =opylH)=qg=1— P(oc = oul|l).

> If told the state is high, posterior is q/[g+ (1 — q)] = q

P If told the state is low, posterioris 1 — g

» lIgnore atoms (for simplicity). The density of private beliefs p is

> #(p) = plr(p) +¥(1 — p)] in state H
> f(p) = (1 - p)[v(p) + (L - p)] in state L

» Lemma: Under the signal quality structure, private belief
distributions are F(p) = 1 — F-(1 — p) for all p € (0,1).

» The density of signals for H at p must equal the density for L
at strength p for L, and so 1 — p for H

» g, is the private belief of individual n
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Random Sampling

» Two actions a and b (eg. ‘decline’ or ‘invest')
> Payoffs uf(a) = ut(a) = 0, uH(b) = 2u, ut(b) = -2
» Unlike herding literature, entire ordered history is not observed

» Everyone observes a random unordered sample s € S of
previous action observations

» Sample size may be random, and sampling weights may also
vary over time (uniform, or sample recent past more often)

> Aggregates model: observe whole unordered history

» Sampling is recursive if individual n+ 1 samples n with

weight 7,, and otherwise individuals (1,...,n— 1) as before
> Stationary recursive sampling is geometric weighting: n

samples individual v with relative weight p"~", where p > 0.

p — 0: only the immediate predecessor is sampled

p < 1: distant past is discounted.

p = 1: proportional sampling

p > 1: recent past is undersampled.
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Social Beliefs

» Every n=1,2,... forms a social belief g, that § = H
» Bayes' rule = posterior belief r, =
» n chooses action b

> iff rou>(1—ry)

> iff pp > (1 — gn)/[ugn + (1 — qn)]
» How does stochastic process of social beliefs (g,) behave?

» |s learning complete in the long run? adequate?
» If not, are there herds? ‘proportionate herds'? cycles?

Pndn
PnQnJF(l*Pn)(l*qn)
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Learning

A\

Individual n samples individual m with probability 7(n, m)
Then Y74 7(n,m) = 1 for each n.
The sampling process does not over-sample the past if for all

m € N and ¢ > 0, there exists M > m such that 7(n,m) < e
and 7(n,0) < ¢ for all n > M.

By independence of sample sizes, a recursive sampling process
(mn) does not over-sample the past if M7° (1 — 7,) = 0.
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No More Overturning

» How you arrive at a history is no longer known, but matters
» Consider beliefs after two opposing choices

a

o
\{b&}

> We have merged together two information sets with wildly
different public beliefs, to create one unified social belief

{a.a}
{a,b}
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Two Reasons for Social Learning to Fail

(a) If X doesn't over-sample the past and private beliefs are
unbounded, then learning is complete.

(b) Learning is incomplete and payoffs are bounded away from the
maximum if X over-samples the past.

(¢) Learning is incomplete and payoffs are bounded away from the
maximum for bounded private beliefs and non-empty samples.
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Random Sampling

» Not everyone correctly herd with uniform random sampling.
» With unbounded private beliefs, an infinite subsequence of
individuals chooses a contrary action.

> Borel Cantelli Lemma: If -7 P(E,) < oo for events {E,},
then the chance that infinitely many events {E,} occur is 0.

> Proof: P(US2 \(En)) < > ooy P(Es) =0
» Early individuals have a positive chance of doing anything.

» With random sampling of > 1 predecessors, everyone is a.s.
sampled by infinitely many successors,

» Since history become arbitrarily informative, anyone sampling
such an individual will eventually choose to follow them

» So, even though the share of individuals taking the right

action tends to one, an infinite subsequence takes a
suboptimal action with positive probability.
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Probabilistic Evolution of Aggregate Observation Model
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7/8
» Upward transitions are INVEST, and downward ones are NOT

» Tip of arrows are probabilities 7/'(k) (public belief in state L)

» Private belief thresholds p,(k) in the boxes at arrow roots.

» Transition probabilities in states H, L above/below arrows
11/12



Are Beliefs a Martingale? (Work with Mingxin Xie)

» After INVEST, the social belief in state L is p1(1) = 1/4.

» The expected continuation E[p | see an investor] is lower:

Pr(2 invests|1 invests) p2(2) + Pr(2 declines|1 invests) pa(1)

~ {1 P )]+ POl FE W) e

n {[1—/31(1)]F”(b1(1))+bl(1)FL( ()} (1)

)
= 3(15/16)+7(9/16)}(1/6)+3(1/16)+(7/16)}(1/2)
= 84/384
< 1/4
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